
Two Studies of Opportunistic Programming:
Interleaving Web Foraging, Learning, and Writing Code

Joel Brandt1,2, Philip J. Guo1, Joel Lewenstein1, Mira Dontcheva2, Scott R. Klemmer1

1Stanford University HCI Group 2Advanced Technology Labs
Computer Science Department Adobe Systems

Stanford, CA 94305 San Francisco, CA 94103
{jbrandt, pg, jlewenstein, srk}@cs.stanford.edu mirad@adobe.com

ABSTRACT
This paper investigates the role of online resources in prob-
lem solving. We look specifically at how programmers—an
exemplar form of knowledge workers—opportunistically in-
terleave Web foraging, learning, and writing code. We de-
scribe two studies of how programmers use online resources.
The first, conducted in the lab, observed participants’ Web
use while building an online chat room. We found that pro-
grammers leverage online resources with a range of inten-
tions: They engage in just-in-time learning of new skills and
approaches, clarify and extend their existing knowledge, and
remind themselves of details deemed not worth remember-
ing. The results also suggest that queries for different pur-
poses have different styles and durations. Do programmers’
queries “in the wild” have the same range of intentions, or
is this result an artifact of the particular lab setting? We an-
alyzed a month of queries to an online programming portal,
examining the lexical structure, refinements made, and re-
sult pages visited. Here we also saw traits that suggest the
Web is being used for learning and reminding. These results
contribute to a theory of online resource usage in program-
ming, and suggest opportunities for tools to facilitate online
knowledge work.

Author Keywords
opportunistic programming, prototyping, copy-and-paste

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation: User
Interfaces—prototyping; user-centered design

INTRODUCTION
“Good grief, I don’t even remember the syntax for forms!”
Less than a minute later, this participant in our Web pro-
gramming lab study had found an example of an HTML form
online, successfully integrated it into her own code, adapted
it for her needs, and moved onto a new task. As she con-
tinued to work, she frequently interleaved foraging for in-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CHI 2009, April 4–9, 2009, Boston, Massachusetts, USA.
Copyright 2009 ACM 978-1-60558-246-7/09/04...$5.00.

formation on the Web, learning from that information, and
authoring code. Over the course of two hours, she used the
Web 27 times, accounting for 28% of the total time she spent
building her application. This participant’s behavior is il-
lustrative of programmers’ increasing use of the Web as a
problem-solving tool. How and why do people leverage on-
line resources while programming?

Web use is integral to an opportunistic approach to program-
ming that emphasizes speed and ease of development over
code robustness and maintainability [4, 13, 8]. Program-
mers do this to prototype, ideate, and discover—to address
questions best answered by creating a piece of functional
software. This type of programming is widespread, per-
formed by novices and experts alike: it happens when de-
signers build functional prototypes to explore ideas, when
scientists write code to control laboratory experiments, when
entrepreneurs assemble complex spreadsheets to better un-
derstand how their business is operating, and when profes-
sionals adopt agile development methods to build applica-
tions quickly [4, 8, 30, 25, 27]. Scaffidi, Shaw, and Myers
estimate that in 2012 there will be 13 million people in the
USA that describe themselves as “programmers”, while the
Bureau of Labor Statistics estimates that there will only be 3
million “professional programmers” [30]. We believe there
is significant value in understanding and designing for this
large population of amateur programmers.

To create software more quickly, programmers often take a
bricolage approach by tailoring or mashing up existing sys-
tems [33, 21, 23, 34, 14]. As part of this process, they
must often search for suitable components and learn new
skills [4]. Recently, programmers began using the Web for
this purpose [32, 15]. How do these individuals forage for
online resources, and how is Web use integrated into the
broader task of programming? This paper contributes the
first strong empirical evidence of how programmers use on-
line resources in practice.

We present the results of two studies that investigate how
programmers leverage online resources. The first asked 20
programmers to rapidly prototype a Web application in the
lab. The second quantitatively analyzed a month-long sam-
ple of Web query data. 24,293 programmers produced the
101,289 queries in the sample. We employed this mixed-
methods approach to gather data that is both contextually
rich and authentic [12, 5].

CHI 2009 ~ Software Development April 8th, 2009 ~ Boston, MA, USA

1589

© ACM, 2009. This is the author's version of the work. It is posted here by permission of ACM for your personal use.
Not for redistribution. The definitive version was published in the Proceedings of CHI 2009. http://dx.doi.org/10.1145/1518701.1518944

RELATED WORK
This paper builds on three bodies of related work: studies of
how programmers reason and learn, investigations of code
copying and reuse, and the design of systems that help pro-
grammers better leverage the Web.

There is a long history of research on cognitive aspects of
programming, summarized well in Détienne’s book [11] and
Mayer’s survey on how novices learn to program [26]. Most
relevant to our work, Ko et al. observed novice program-
mers for a semester as they learned to use Visual Basic
.NET [19]. The researchers classified all occurrences of in-
surmountable barriers, defined as problems that could only
be overcome by turning to external resources. They identi-
fied six classes of barriers—design, selection, coordination,
use, understanding, and information—and suggested ways
that tools could lower these barriers. This work is largely
complementary to ours—while they provide insight into the
problems that programmers face, there is little discussion of
how programmers currently overcome these barriers.

Prior research in software engineering has studied code
cloning within software projects through both automated [3,
10] and ethnographic [18] approaches. Many of Kim et al.’s
insights—most notably that it would be valuable for tools
to record and visualize dependencies created when copy-
ing and pasting code—could prove valuable when design-
ing tools for opportunistic programming. However, because
this software engineering research has been focused on min-
imizing intra-project duplicated code to reduce maintenance
costs [17], it has generally ignored the potential value of
copying code for learning and for between-project usage.

There has been recent interest in building improved Web
search and data mining tools for programmers [32, 29, 15,
2]. Stylos and Myers describe how programmers may learn
APIs, based on observations of three “small programming
projects” [32]. They suggest that programmers begin with
initial design ideas, gain a high-level understanding of po-
tential APIs to use, and then finalize the details by finding
and integrating examples, which may cause them to return
to earlier steps. The authors suggest that programmers use
the Web at all three stages, but in very different ways at each
stage. As part of designing a Web search tool for program-
mers, Hoffmann et al. classified Web search sessions about
Java programming into 11 search goals (e.g. beginner tuto-
rials, APIs, and language syntax) [15]. We extend this liter-
ature by providing richer data, a clearer picture of how pro-
grammers go about performing these searches, and how they
leverage foraged Web content.

Several systems use data-mining techniques to locate or syn-
thesize example code. XSnippet uses the current program-
ming context of Java code (e.g. types of methods and vari-
ables in scope) to automatically locate example code for in-
stantiating objects [29]. Mandelin et al. show how to au-
tomatically synthesize a series of method calls in Java that
will transform an object of one type into an object of another
type, useful for navigating large, complex APIs [24]. A lim-
itation of this approach is that the generated code lacks the
comments, context, and explanatory prose found in tutorials.

Self-Rated
Proficiency Tasks Completed

Su
bj

ec
t#

E
xp

er
ie

nc
e

H
T

M
L

Ja
va

Sc
ri

pt

P
H

P

A
JA

X

U
se

rn
am

e

Po
st

A
JA

X
U

pd
at

e

Ti
m

es
ta

m
p

H
is

to
ry

1 11 7 4 6 5 • • • • •
2 17 5 4 2 1 • • • •
3 13 7 5 5 2 • • • •
4 4 6 4 5 2 • • • • •
5 15 6 7 6 5 • • • • •
6 2 6 5 3 4 • • • • •
7 7 5 4 4 4 • • • • •
8 8 5 2 4 2 • • •
9 5 7 2 5 6 • • • •
10 6 5 3 4 2 • • • • •
11 13 4 5 5 5 • • • • •
12 2 6 3 5 2 • • • • •
13 6 7 4 5 2 • • • • •
14 1 5 3 3 2 • • • • •
15 8 5 2 3 2 • • • • •
16 8 7 7 6 7 • • • • •
17 15 7 2 7 2 • • • • •
18 7 5 4 5 4 • • • • •
19 13 5 5 4 5 • • • • •
20 5 6 3 6 2 • • • •

Table 1. Demographic information on the 20 participants in our lab
study. Experience is given in number of years; self-rated proficiency
uses a Likert scale from 1 to 7, with 1 representing “not at all profi-
cient” and 7 representing “extremely proficient”.

STUDY 1: OPPORTUNISTIC PROGRAMMING IN THE LAB
We conducted an exploratory study in our lab to understand
how programmers leverage online resources, especially for
rapid prototyping.

Method
20 Stanford University students (3 female), all proficient pro-
grammers, participated in a 2.5-hour session. The partici-
pants (5 Ph.D., 4 Masters, 11 undergraduate) had an average
of 8.3 years of programming experience; all except three had
at least 4 years of experience. However, the participants had
little professional experience: only one spent more than 1
year as a professional developer.

When recruiting, we specified that participants should have
basic knowledge of PHP, JavaScript, and the AJAX paradigm.
However, 13 participants rated themselves as novices in at
least one of the technologies involved. (Further demographic
information is presented in Table 1.) Participants were com-
pensated with their choice of class research credit (where
applicable) or a $99 Amazon.com gift certificate.

The participants’ task was to prototype a Web chat room ap-
plication using HTML, PHP, and JavaScript. They were asked
to implement five specific features (listed in Figure 1). Four
of the features were fairly typical but the fifth (retaining a
limited chat history) was more unusual. We introduced this
feature so that participants would have to do some program-
ming, even if they implemented other features by down-
loading an existing chat room application (3 participants did
this). We instructed participants to think of the task as a
hobby project, not as a school or work assignment. Partici-
pants were not given any additional guidance or constraints.

CHI 2009 ~ Software Development April 8th, 2009 ~ Boston, MA, USA

1590

Chat Room Features

1. Users should be able to set their username on the chat room page
(application does not need to support account management). [Username]

2. Users should be able to post messages. [Post]

3. The message list should update automatically without a complete
page reload. [AJAX update]

4. Each message should be shown with the username of the poster and
a timestamp. [Timestamp]

5. When users first open a page, they should see the last 10 messages
sent in the chat room, and when the chat room updates, only the last
10 messages should be seen. [History]

Figure 1. List of chat room features that lab study participants were
asked to implement. The first four features are fairly typical; the fifth,
retaining a limited chat history, is more unique.

We provided each participant with a working execution envi-
ronment within Windows XP (Apache, MySQL, and a PHP
interpreter) with a “Hello World” PHP application already
running. They were also provided with several standard
code authoring environments (Emacs, VIM, and Aptana, a
full-featured IDE that provides syntax highlighting and code
assistance for PHP, JavaScript and HTML) and allowed to
install their own. Participants were allowed to bring any
printed resources they typically used while programming
and were told that they were allowed to use any resources,
including any code on the Internet and any code they had
written in the past that they could access.

Three researchers observed each participant; all took notes.
During each session, one researcher asked open-ended ques-
tions such as “why did you choose to visit that Web site?”
or “how are you going to go about tracking down the source
of that error?” that encouraged think-aloud reflection at rel-
evant points (in particular, whenever participants used the
Web as a resource). Researchers compared notes after each
session and at the end of the study to arrive at the qualitative
conclusions. Audio and video screen capture were recorded
for all participants and were later coded for the amount of
time participants used the Web.

Results
All participants used the Web extensively (see Figure 3). On
average, each participants spent 19% of their programming
time on the Web (25.5 of 135 minutes; σ = 15.1 minutes) in
18 distinct sessions (σ = 9.1).

The lengths of Web use sessions resembles a power-law dis-
tribution (see Figure 2). The shortest half (those less than
47 seconds) compose only 14% of the total time; the longest
10% compose 41% of the total time. This suggests that indi-
viduals are leveraging the Web to accomplish several differ-
ent kinds of activities. Web usage also varied considerably
between participants: The most-active Web user spent an or-
der of magnitude more time online than the least active user.

Intentions behind Web use
Why do programmers go to the Web? At the long end of the
spectrum, participants spent tens of minutes learning a new
concept (e.g. by reading a tutorial on AJAX-style program-

session (sorted by length)

se
ss

io
n

le
ng

th
 (n

um
. s

ec
on

ds
)

60 120 180 240 300 360

0
20

0
40

0
60

0
80

0

0

Figure 2. All 360 Web use sessions amongst the 20 participants in our
lab study, sorted and plotted by decreasing length (in seconds). The
left vertical bar represents the cutoff separating the 10% longest ses-
sions, and the right bar the cutoff for 50% of sessions. The dotted line
represents a hypothetical uniform distribution of session lengths.

ming). On the short end, participants delegated their mem-
ory to the Web, spending tens of seconds to remind them-
selves of syntactic details of a concept they new well (e.g.
by looking up the structure of a foreach loop). In between
these two extremes, participants used the Web to clarify their
existing knowledge (e.g. by viewing the source of an HTML
form to understand the underlying structure). This section
presents typical behaviors, anecdotes, and theoretical expla-
nations for these three styles of online resource usage (see
Table 2 for a summary).

Scaffolds for learning-by-doing
Participants routinely stated that they were using the Web
to learn about unfamiliar technologies. These Web sessions
typically started with searches used to locate tutorial Web
sites. After selecting a tutorial, participants frequently used
its source code as a scaffold for learning-by-doing.

Searching for tutorials: Participants’ queries usually con-
tained a natural-language description of a problem they were
facing, often augmented with several keywords specifying
technology they planned to use (e.g. “php” or “javascript”).
For example, one participant unfamiliar with the AJAX
paradigm performed the query “update web page without
reloading php”. Query refinements were common for this
type of Web use, often before the user clicked on any re-
sults. These refinements were usually driven by familiar
terms seen on the query result page: In the above example,
the participant refined the query to “ajax update php”.

Selecting a tutorial: Participants typically clicked several
query result links, opening each in a new Web browser tab
before evaluating the quality of any of them. After several
pages were opened, participants would judge their quality
by rapidly skimming. In particular, several participants re-
ported using cosmetic features—e.g. prevalence of adver-
tising on the Web page or whether code on the page was
syntax-highlighted—to evaluate the quality of potential Web
sites. When we asked one participant how she decided what

CHI 2009 ~ Software Development April 8th, 2009 ~ Boston, MA, USA

1591

14.2

37.8

18.1

7.2
9.2

16.2

24.3

26.8
30.2

38.8

68.8

34.8
30.3

42.8

36.3

9.5

14.2

25.4

15.9

10.2
18

27

8

8
21

13

13

35
17

40

25

11
13

14

27

10

13

22

18

7
11

25

4

6
6

5

21

9
24

30

33

9
10

1

29

6

2

24

17

9

0 15 30 45 60 75 90 105 120 135

su
bj

ec
ts

 (s
or

te
d

by
 to

ta
l w

eb
 u

se
)

minutes

to
ta

l m
inu

te
s

nu
m

. u
se

s
nu

m
. s

ea
rc

he
s

Figure 3. Overview of when participants referenced the Web during the laboratory study. Subjects are sorted by total amount of time spent using the
Web. Web use sessions are shown in light blue, and instances of Web search are shown as dark bars.

Web pages are trustworthy, she explained, “I don’t want [the
Web page] to say ‘free scripts!’, or ‘get your chat room
now!’, or stuff like that. I don’t want that because I think
it’s gonna be bad, and most developers don’t write like that
. . . they don’t use that kind of language.” This assessing be-
havior is consistent with information scent theory, in that
users decide which Web pages to explore by evaluating their
surface-level features [28].

Using the tutorial: Once a participant found a tutorial that
he believed would be useful, he would often immediately be-
gin experimenting with its code samples (even before read-
ing the prose). We believe this is because tutorials typically
contain a great deal of prose, which is time-consuming to
read and understand. Subject 10 said, “I think it’s less ex-
pensive for me to just take the first [code I find] and see how
helpful it is at . . . a very high level . . . as opposed to just read-
ing all these descriptions and text.”

Participants often began adapting code before completely
understanding how it worked. One participant explained,
“there’s some stuff in [this code] that I don’t really know
what it’s doing, but I’ll just try it and see what happens.” He
copied four lines into his project, immediately removed two
of the four, changed variable names and values, and tested.
The entire interaction took 90 seconds. This learning-by-
doing approach has one of two outcomes: It either leads to
deeper understanding, mitigating the need to read the tuto-
rial’s prose, or it isolates challenging areas of the code, guid-
ing a more focused reading of the tutorial’s prose.

For programmers, what is the cognitive benefit of experi-
mentation over reading? Results from cognitive modeling
may shed light on this. Cox and Young developed two ACT-R
models to simulate a human learning the interface for a cen-
tral heating unit [9]. The first model was given “‘how-to-do-
the-task’ instructions” and was able to carry out only those
specific tasks from start to finish. The second model was
given “‘how-the-device-works’ instructions,” (essentially a
better mapping of desired states of the device to actions
performed) and afterwards could thus complete a task from
any starting point. Placing example code into one’s project
amounts to picking up a task “in the middle”. We suggest
that when participants experiment with code, it is precisely
to learn these action/state mappings.

Approximately 1/3 of the code in participants’ projects was
physically copied and pasted from the Web. This code came
from many sources: While a participant may have copied a
hundred lines of code altogether, he did so ten lines at a time.
This approach of programming by example modification is
consistent with Yeh et al.’s study of students learning to use
a Java toolkit [35].

Clarification of existing knowledge
There were many cases where participants had a high-level
understanding of how to implement functionality, but did not
know how to implement it in the specific programming lan-
guage. They needed a piece of clarifying information to help
map their schema to the particular situation. The introduc-

CHI 2009 ~ Software Development April 8th, 2009 ~ Boston, MA, USA

1592

WEB SESSION INTENTION: LEARNING CLARIFICATION REMINDER

Reason for using Web Just-in-time learning of Connect high-level knowledge Substitute for memorization (e.g., language
unfamiliar concepts to implementation details syntax or function usage lookup)

Web session length Tens of minutes ∼ 1 minute < 1 minute
Starts with web search? Almost always Often Sometimes

Search terms Natural language related Mix of natural language and code, Mostly code (e.g., function
to high-level task cross-language analogies names, language keywords)

Example search “ajax tutorial” “javascript timer” “mysql fetch array”

Num. result clicks Usually several Fewer Usually zero or one
Num. query refinements Usually several Fewer Usually zero

Types of webpages visited Tutorials, API documentation, API documentation,
how-to articles blog posts, articles result snippets on search page

Amount of code copied Dozens of lines Several lines Varies
from Web (e.g., from tutorial snippets)

Immediately test copied code? Yes Not usually, often trust snippets Varies

Table 2. Summary of characteristics of three points on the spectrum of Web use intention.

tion presented an example of this behavior: The participant
had a general understanding of HTML forms, but did not
know all of the required syntax. These clarifying activities
are distinct from learning activities because participants can
easily recognize and adapt the necessary code once they find
it. Because of this, clarifying uses of the Web are shorter
than learning uses.

Searching with synonyms: Participants often used Web
search when they were unsure of exact terms. We observed
that search works well for this task because synonyms of the
correct programming terms often appear in online forums
and blogs. For example, one participant used a JavaScript
library that he had used in the past but “not very often,” to
implement the AJAX portion of the task. He knew that AJAX
worked by making requests to other pages, but he forgot
the exact mechanism for accomplishing this in his chosen
library (named Prototype). He searched for “prototype re-
quest”. The researchers asked, “Is ‘request’ the thing that
you know you’re looking for, the actual method call?” He
replied, “No. I just know that it’s probably similar to that.”

Clarification queries contained more programming-
language-specific terms than learning ones. Often, however,
these terms were not from the correct programming lan-
guage! Participants often made language analogies: For
example, one participant said “Perl has [a function to
format dates as strings], so PHP must as well”. Similarly,
several participants searched for “javascript thread”. While
JavaScript does not explicitly contain threads, it supports
similar functionality through interval timers and callbacks.
All participants who performed this search quickly arrived
at an online forum or blog posting that pointed them to the
correct function for setting periodic timers: setInterval.

Testing copied code (or not): When participants copied
code from the Web during clarification uses, it was often
not immediately tested. Participants typically trusted code
found on the Web, and indeed, it was typically correct. How-
ever, they would often make minor mistakes when adapting
the code to their needs (e.g. forgetting to change all in-
stances of a local variable name). Because they believed

the code correct, they would then work on other functional-
ity before testing. When they finally tested and encountered
bugs, they would often erroneously assume that the error was
in recently-written code, making such bugs more difficult to
track down.

Using the Web to debug: Participants also used the Web
for clarification during debugging. Often, when a partici-
pant encountered a cryptic error message, he would imme-
diately search for that exact error on the Web. For example,
one participant received an error that read, “XML Filtering
Predicate Operator Called on Incompatible Functions.” He
mumbled, “What does that mean?” then followed the error
alert to a line that contained code previously copied from the
Web. The code did not help him understand the meaning of
the error, so he searched for the full text of the error. The
first site he visited was a message board with a line saying
“This is what you have:” followed by the code in question
and another line saying “This is what you should have:” fol-
lowed by a corrected line of code. With this information, the
participant returned to his code and successfully fixed the
bug without ever fully understanding the cause.

Reminders about forgotten details
Even when participants were familiar with a concept, they
often did not remember low-level syntactic details. For ex-
ample, one participant was adept at writing SQL queries, but
unsure of the correct placement of a limit clause. Immedi-
ately after typing “ORDER BY respTime”, he went online
and searched for “mysql order by”. He clicked on the sec-
ond link, scrolled halfway down the page, and read a few
lines. Within ten seconds he had switched back to his code
and added “LIMIT 10” to the end of his query. In short,
when participants used the Web for reminding about details,
they knew exactly what information they were looking for,
and often knew exactly on which page they intended to find
it (e.g. official API documentation).

Searching for reminders (or not): When participants used
the Web for learning and clarification, they almost always
began by performing a Web search and then proceeded to

CHI 2009 ~ Software Development April 8th, 2009 ~ Boston, MA, USA

1593

view one or more results. In the case of reminders, some-
times participants would perform a search and view only
the search result snippets without viewing any of the results
pages. For example, when one participant forgot a word in
a long function name, a Web search allowed him to quickly
confirm the exact name of the function simply by browsing
the snippets in the results page. Other times, participants
would view a page without searching at all. This is because
participants often kept select Web sites (such as official lan-
guage documentation) open in browser tabs to use for re-
minders when necessary.

The Web as an external memory aid: Several partici-
pants reported using the Web as an alternative to memorizing
routinely-used snippets of code. One participant browsed to
a page within PHP’s official documentation that contained
six lines of code necessary to connect and disconnect from
a MySQL database. After he copied this code, a researcher
asked him if he had copied it before. He responded, “[yes,]
hundreds of times”, and went on to say that he never both-
ered to learn it because he “knew it would always be there.”
We believe that in this way, programmers can effectively dis-
tribute their cognition [16], allowing them to devote more
mental energy to higher-level tasks.

STUDY 2: WEB SEARCH LOG ANALYSIS
Do query styles in the real world robustly vary with in-
tent, or is this result an artifact of the particular lab set-
ting? To investigate this, we analyzed Web query logs
from 24,293 programmers making 101,289 queries about the
Adobe Flex Web application development framework in July
2008. These queries came from the Community Search por-
tal on Adobe’s Developer Network Web site. This portal in-
dexes documentation, articles, blogs, and forums by Adobe
and vetted third-party sources [1].

To cross-check the lab study against this real-world data set,
we began this analysis by evaluating four hypotheses derived
from those findings:

1. Learning sessions begin with natural language queries
more often than reminding sessions.

2. Users more frequently refine queries without first viewing
results when learning than when reminding.

3. Programmers are more likely to visit official API docu-
mentation in reminding sessions.

4. The majority of reminding sessions start with code-only
queries. Additionally, code-only queries are least likely to
be refined, and contain the fewest number of result clicks.

Method
We analyzed the data in three steps. First, we used IP ad-
dresses (24,293 total unique IPs) and timestamps to group
queries (101,289 total) into sessions (69,955 total). A ses-
sion was defined as a sequence of query and result-click
events from the same IP address with no gaps longer than
six minutes. (This definition is common in query log analy-
sis, e.g. [31].)

Second, we selected 300 of these sessions and analyzed them
manually. We found it valuable to examine all of a user’s
queries because doing so provided more contextual infor-
mation. We used unique IP addresses as a proxy for users,
and randomly selected from among users with at least 10
sessions. 996 met this criteria; we selected 19. This IP-user
mapping is close but not exact: a user may have searched
from multiple IP addresses, and some IP addresses may map
to multiple users. It seems unlikely, though, that conflating
IPs and users would affect our analysis.

These sessions were coded as one of learning, reminding,
unsure, or misgrouped. (Because the query log data is vol-
umenous but lacks contextual information, we did not use
the clarifying midpoint in this analysis.) We coded a ses-
sion as learning or reminding based on the amount of knowl-
edge we believed the user had on the topic he was searching
for, and as unsure if we could not tell. To judge the user’s
knowledge, we used several heuristics: whether the query
terms were specific or general (e.g. “radio button selection
change” is a specific search indicative of reminding), con-
tents of pages visited (e.g. a tutorial indicates learning), and
whether the user appeared to be an expert (determined by
looking at the user’s entire search history—someone who
occasionally searches for advanced features is likely to be
an expert.) We coded a session as misgrouped if it appeared
to have multiple unrelated queries (potentially caused by a
user performing unrelated searches in rapid succession, or
by pollution from multiple users with the same IP address).

Finally, we computed three properties about each search ses-
sion. The appendix gives a description of how we computed
each property.

1. Query type—whether the query contained only code
(terms specific to the Flex framework, such as class and
function names), only natural language, or both.

2. Query refinement method—between consecutive queries,
whether search terms were generalized, specialized, oth-
erwise reformulated, or changed completely.

3. Types of Web pages visited—each result click was classi-
fied as one of four page types: Adobe APIs, Adobe tutori-
als, tutorials/articles (by third-party authors), and forums.

For the final property, 10,909 of the most frequently visited
pages were hand-classified (out of 19,155 total), accounting
for 80% of all visits. Result clicks for the remaining 8246
pages (20% of visits) were labeled as unclassified.

Type of Session type All
first query learning reminding hand-coded
code only 0.21 0.56 0.48
nat. lang. & code 0.29 0.10 0.14
nat. lang. only 0.50? 0.34 0.38
Total 1.00 1.00 1.00

Table 3. For hand-coded sessions of each type, proportion of first
queries of each type (252 total sessions). Significant majorities across
each row in bold, ? entry means only significant at p < 0.05.

CHI 2009 ~ Software Development April 8th, 2009 ~ Boston, MA, USA

1594

Result click Session type All
Web page type learning reminding hand-coded
Adobe APIs 0.10 0.31 0.23
Adobe tutorials 0.35 0.42 0.40
tutorials/articles 0.31 0.10 0.17
forums 0.06 0.04 0.05
unclassified 0.18 0.13 0.15
Total 1.00 1.00 1.00

Table 4. For queries in hand-coded sessions of each type, proportion
of result clicks to Web sites of each type (401 total queries). Significant
majorities across each row in bold.

Results
Out of 300 sessions, 20 appeared misgrouped, and we were
unsure of the intent of 28. Of the remaining 252 sessions, 56
(22%) had learning traits and 196 (78%) reminding traits.
An example of a session with reminding traits had a single
query for “function as parameter” and a single result click
on the first result, a language specification page. An exam-
ple of a session with learning traits began with the query
“preloader”, which was refined to “preloader in flex” and
then “creating preloader in flex”, followed by a result click
on a tutorial.

We used the Mann-Whitney U test for determining statis-
tical significance of differences in means and the chi-square
test for determining differences in frequencies (proportions).
Unless otherwise noted, all differences are statistically sig-
nificant at p < 0.001.

H1: The first query was exclusively natural language in half
of learning sessions, versus one third in reminding sessions
(see Table 3).

H2: Learning and reminding sessions do not have a signifi-
cant difference in the proportion of queries with refinements
before first viewing results.

H3: Programmers were more likely to visit official API doc-
umentation in reminding sessions than in learning sessions
(31% versus 10%, see Table 4). Notably, in reminding ses-
sions, 42% of results viewed were Adobe tutorials.

H4: Code-only queries accounted for 51% of all reminding
queries. Among all (including those not hand-coded) ses-
sions, those beginning with code-only queries were refined
less (µ = 0.34) than those starting with natural language and
code (µ = 0.60) and natural language only (µ = 0.51). It
appears that when programmers perform code-only queries,
they know what they are looking for, and typically find it on
the first search.

After evaluating these hypotheses, we performed further
quantitative analysis of the query logs. In this analysis, we
focused on how queries were refined and the factors that cor-
related with types of pages visited.

Programmers rarely refine queries, but are good at it
In this data set, users performed an average of 1.45 queries
per session (the distribution of session lengths is shown
in Figure 4). This is notably less than other reports, e.g.,
2.02 [31]. This may be a function of improving search en-
gines, that programming as a domain is well-suited to search,
or that the participants were skilled.

1 2 3 4 5 6 7 8

query number within session

nu
m

. q
ue

rie
s

of
 e

ac
h

se
ar

ch
 te

rm
 ty

pe

0
20

00
0

40
00

0
60

00
0

code only

words and code

words only

1 2 3 4 5 6 7 8

query number within session

%
 q

ue
rie

s
of

 e
ac

h
se

ar
ch

 te
rm

 ty
pe

0
20

40
60

80
10

0

Figure 4. How query types changed as queries were refined. In both
graphs, each bar sums all ith queries over all sessions that contained an
ith query (e.g. a session with three queries contributed to the sums in
the first three bars). The graph on the left is a standard histogram; the
graph on the right presents the same data, but with each bar’s height
normalized to 100 to show changes in proportions as query refinements
occurred.

Across all sessions and refinement types, 66% of queries
after refinements have result clicks, which is significantly
higher than the percentage of queries before refinements
(48%) that have clicks. This contrast suggests that refining
queries generally produces better results.

When programmers refined a query to make it more spe-
cialized, they generally did so without first clicking through
to a result (see Table 5). Presumably, this is because they
assessed the result snippets and found them unsatisfactory.
Programmers may also see little risk in “losing” a good re-
sult when specializing—if it was a good result for the ini-
tial query, it ought to be a good result for the more special-
ized one. This hypothesis is reinforced by the relatively high
click rate before performing a completely new query (pre-
sumably on the same topic)—good results may be lost by
completely changing the query, so programmers click any
potentially valuable links first. Finally, almost no one clicks
before making a spelling refinement, which makes sense be-
cause people mostly catch typos right away.

Users began with code-only searches 48% of the time and
natural language searches 38% of the time (see Figure 4).
Only 14% of the time was the first query mixed. The percent
of mixed queries steadily increased to 42% by the eighth
refinement, but the percent of queries containing only natural
language stayed roughly constant throughout.

Query type predicts types of pages visited
There is some quantitative support for the intuition that
query type is indicative of query intent (see Table 6). Code-
only searches, which one would expect to be largely remind-
ing queries, are most likely to bring programmers to official
Adobe API pages (38% versus 23% overall) and least likely

Refinement type
generalize new reformulate specialize spelling All

0.44 0.61 0.51 0.39 0.14 0.48

Table 5. For each refinement type, proportion of refinements of that
type where programmers clicked on on any links prior to the refinement
(31,334 total refinements).

CHI 2009 ~ Software Development April 8th, 2009 ~ Boston, MA, USA

1595

Result click query type All
Web page type code nat. lang. & code nat. lang. clicks
Adobe APIs 0.38 0.16 0.10 0.23
Adobe tutorials 0.31 0.33 0.39 0.34
tutorials/articles 0.15 0.22 0.19 0.18
forums 0.03 0.07 0.06 0.05
unclassified 0.13 0.22 0.27 0.20
Total 1.00 1.00 1.00 1.00

Table 6. For queries of each type, proportion of result clicks leading
programmer to Web pages of each type (107,343 total queries). Signifi-
cant majorities and near-ties across each row in bold.

to bring programmers to all other types of pages. Natural-
language-only queries, which one would expect to be largely
learning queries, are most likely to bring programmers to of-
ficial Adobe tutorials (39% versus 34% overall).

DISCUSSION
This section presents five insights from these studies and
suggests the import of each for programming tools. It then
discusses broader implications of the work and limitations
of the findings.

Five Key Insights and Implications for Tools
Programmers use Web tutorials for just-in-time learn-
ing, gaining high-level conceptual knowledge when they
need it. Tools may valuably encourage this practice by
tightly coupling tutorial browsing and code authoring. One
system that explores this direction is d.mix, which allows
users to “sample” a Web site’s interface elements, yielding
the API calls necessary to create them [14]. This code can
then be modified inside a hosted sandbox.

Web search often serves as a “translator” when program-
mers don’t know the exact terminology or syntax. Using the
Web, programmers can adapt existing knowledge by making
analogies with programming languages, libraries and frame-
works that they know well. The Web further allows pro-
grammers to make sense of cryptic errors and debugging
messages. Future tools could proactively search the Web for
the errors that occur during execution, compare code from
search results to the user’s own code, and automatically lo-
cate possible sources of errors.

Programmers deliberately choose not to remember com-
plicated syntax. Instead, they use the Web as external mem-
ory that can be accessed as needed. This suggests that Web
search should be integrated into the code editor in much the
same way as identifier completion (e.g., Microsoft’s Intel-
liSense and Eclipse’s Code Assist). Another possible ap-
proach is to build upon ideas like keyword programming [22]
to create authoring environments that allow the programmer
to type “sloppy” commands which are automatically trans-
formed into syntactically correct code using Web search.

Programmers often delay testing code copied from the
Web, especially when copying routine functionality. As a
result, bugs introduced when adapting copied code are of-
ten difficult to find. Tools could assist in the code adapta-
tion process by, for example, highlighting all variable names
and literals in any pasted code. Tools could also clearly de-

marcate regions of code that were copied from the Web and
provide links back to the original source.

Programmers are good at refining their queries, but need
to do it rarely. Query refinement is most necessary when
users are trying to adapt their existing knowledge to new
programming languages, frameworks, or situations. This
underscores the value of keeping users in the loop when
building tools that search the Web automatically or semi-
automatically. In other cases, however, query refinements
could be avoided by building tools that automatically aug-
ment programmers’ queries with contextual information,
such as the programming language, frameworks or libraries
in the project, or the types of variables in scope.

Knowledge Work on the Web
The Web has a substantially different cost structure than
other information resources: It is cheaper to search for in-
formation, but its diverse nature may make it more difficult
to understand and evaluate what is found. Understanding
the Web’s role in knowledge work is a broad area of re-
search [7]. This paper illustrates an emerging problem solv-
ing style that uses Web search to enumerate possible solu-
tions. However, programmers—and likely, other knowledge
workers—currently lack tools for rapidly understanding and
evaluating these possible solutions. Experimenting with new
tools in the “petri dish” of programming may offer further
insights about how to better support all knowledge workers.

Limitations
One limitation of studying student programmers in the lab
is that their behavior and experience may differ from the
broader population of programmers. Our query log analysis,
prior work (e.g. [32, 15]), and informal observation of on-
line forums suggest that programmers of all skill levels are
indeed turning to the Web for help. An important area for
future work will be to better understand how the behaviors
of these populations differ.

A limitation of the query log study is that it does not distin-
guish queries that were “opportunistic” from those that were
not. It remains an open question whether there is a causal re-
lationship between programming style and Web usage style.

Finally, our studies do not consider any resources other than
the Web, such as printed media, or one’s colleagues. (While
we notified the lab participants that they could bring printed
materials, none did.) This paper looks exclusively at Web
usage; other researchers have similarly examined other in-
formation resources individually (e.g. Chong et al. exam-
ined collaboration between programmers during solo and
pair programming [6]). Future work is needed to compare
the trade-offs of these different information resources.

CONCLUSIONS AND FUTURE WORK
We have presented empirical data on how programmers, as
an exemplar form of knowledge workers, leverage the Web
to solve problems while programming. Web resources will
likely play an increasingly important role in problem solv-
ing; throughout the paper, we have suggested several direc-
tions for tools research.

CHI 2009 ~ Software Development April 8th, 2009 ~ Boston, MA, USA

1596

This research also suggests several directions for future em-
pirical work. First, the work presented here looks expressly
at the Web. Many additional resources exist, such as col-
leagues and books. It is clear that different resources have
very different cost structures: The cost of performing a Web
query is substantially lower than interrupting a colleague,
but the latter may provide much better information. More
work is needed to fully understand these trade-offs.

Second, it would be valuable to better understand how a
programmer’s own code is reused between projects. In ear-
lier fieldwork we observed that programmers had a desire to
reuse code, but found it difficult to do so because of lack of
organization and changes in libraries [4].

Third, understanding knowledge work and the Web requires
a richer theory of what motivates individuals to contribute
information, such as tutorials and code snippets. How might
we lower the threshold to contribution? Is it possible to
“crowdsource” finding and fixing bugs in online code? Can
we improve the experience of reading a tutorial by knowing
how the previous 1,000 readers used that tutorial? These are
just some of the many open questions in this space.

Finally, how does the increasing prevalence and accessibil-
ity of Web resources change the way we teach people to pro-
gram? The skill set required of programmers is changing
rapidly—they may no longer need any training in the lan-
guage, framework, or library du jour, but instead may need
ever-increasing skill in formulating and breaking apart com-
plex problems. It may be that programming is becoming less
about knowing how to do something and more about know-
ing how to ask the right questions.

ACKNOWLEDGEMENTS
We thank Rob Liebscher and Diana Joseph at Adobe Sys-
tems for their help in acquiring the Web query logs; Beyang
Liu for his help in coding video data from our lab study; Intel
for donating PCs for this research; and all of the study partic-
ipants for sharing their insights. This research was supported
in part by NSF Grant IIS-0745320.

APPENDIX: QUERY LOG ANALYSIS METHOD DETAILS

Determining Query Type
We first split each query string into individual tokens using
whitespace. Then we ran each token through three classi-
fiers to determine if it was code (i.e., Flex-specific keywords
and class/function names from the standard library). The
first classifier checked if the token was a (case-insensitive)
match for any classes in the Flex framework. The second
checked if the token contained camelCase (a capital letter
in the middle of the word), which was valuable because all
member functions and variables in the Flex framework use
camelCase. The third checked if the token contained a dot,
colon, or ended with an open and closed parenthesis, all in-
dicative of code. If none of these classifiers matched, we
classified the token as a natural-language word.

Determining Query Refinement Method
We classified refinements into five types, roughly following
the taxonomy of Lau and Horvitz [20]. A generalize refine-
ment had a new search string with one of the following prop-
erties: it was a substring of the original, it contained a proper
subset of the tokens in the original, or it split a single token
into multiple tokens and left the rest unchanged. A specialize
refinement had a new search string with one of the following
properties: it was a superstring of the original, it added to-
kens to the original, or it combined several tokens from the
original together into one and left the rest unchanged. A re-
formulate refinement had a new search string that contained
some tokens in common with the original but was neither
a generalization nor specialization. A new query had no to-
kens in common with the original. Spelling refinements were
any queries where spelling errors were corrected, as defined
by Levenshtein distances between corresponding tokens all
being less than 3.

Determining Web Page Type
We built regular expressions that matched sets of URLs that
were all the same type. A few Web sites, such as the offi-
cial Adobe Flex documentation and official tutorial pages,
contain the majority of all visits (and can be described us-
ing just a few regular expressions). We sorted all 19,155
result click URLs by number of visits and classified the most
frequently-visited URLs first. With only 38 regular expres-
sions, we were able to classify pages that accounted for 80%
of all visits. We did not hand-classify the rest of the pages
because the cost of additional manual effort outweighed the
potential marginal benefits.

REFERENCES
1. Adobe Flex Developer Center, 2008.

http://www.adobe.com/devnet/flex/.

2. S. Bajracharya, T. Ngo, E. Linstead, Y. Dou, P. Rigor, P. Baldi, and
C. Lopes. Sourcerer: A Search Engine for Open Source Code
Supporting Structure-Based Search. In Companion to OOPSLA 2006:
ACM Symposium on Object-oriented Programming Systems,
Languages, and Applications, pages 681–682, Portland, Oregon,
2006.

3. I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier. Clone
Detection Using Abstract Syntax Trees. In Proceedings of ICSM
1998: IEEE International Conference on Software Maintenance, page
368, Washington, D.C., USA, 1998.

4. J. Brandt, P. J. Guo, J. Lewenstein, and S. R. Klemmer. Opportunistic
Programming: How Rapid Ideation and Prototyping Occur in
Practice. In WEUSE 2008: International Workshop on End-User
Software Engineering, pages 1–5, Leipzig, Germany, 2008.

5. S. Carter, J. Mankoff, S. R. Klemmer, and T. Matthews. Exiting the
Cleanroom: On Ecological Validity and Ubiquitous Computing.
Human-Computer Interaction, 23(1):47–99, 2008.

6. J. Chong and R. Siino. Interruptions on Software Teams: A
Comparison of Paired and Solo Programmers. In Proceedings of
CSCW 2006: ACM Conference on Computer Supported Cooperative
Work, 2006.

7. C. W. Choo, B. Detlor, and D. Turnbull. Web Work: Information
Seeking and Knowledge Work on the World Wide Web. Kluwer
Academic Publishers, 2000.

8. S. Clarke. What is an End-User Software Engineer? In End-User
Software Engineering Dagstuhl Seminar, Dagstuhl, Germany, 2007.

CHI 2009 ~ Software Development April 8th, 2009 ~ Boston, MA, USA

1597

9. A. L. Cox and R. M. Young. Device-Oriented and Task-Oriented
Exploratory Learning of Interactive Devices. Proceedings of ICCM
2000: International Conference on Cognitive Modeling, pages 70–77,
2000.

10. S. Ducasse, M. Rieger, and S. Demeyer. A Language Independent
Approach for Detecting Duplicated Code. In Proceedings of ICSM
1999: IEEE International Conference on Software Maintenance, page
109, Oxford, England, 1999.

11. Françoise Détienne. Software Design: Cognitive Aspects. Springer,
2001.

12. C. Grimes, D. Tang, and D. M. Russell. Query Logs Alone are Not
Enough. In Workshop on Query Log Analysis at WWW 2007:
International World Wide Web Conference, Banff, Alberta, Canada,
2007.

13. B. Hartmann, S. Doorley, and S. R. Klemmer. Hacking, Mashing,
Gluing: Understanding Opportunistic Design. IEEE Pervasive
Computing, September 2008.

14. B. Hartmann, L. Wu, K. Collins, and S. R. Klemmer. Programming by
a Sample: Rapidly Creating Web Applications with d.mix. In
Proceedings of UIST 2007: ACM Symposium on User Interface
Software and Technology, pages 241–250, Newport, Rhode Island,
2007.

15. R. Hoffmann, J. Fogarty, and D. S. Weld. Assieme: Finding and
Leveraging Implicit References in a Web Search Interface for
Programmers. In Proceedings of UIST 2007: ACM Symposium on
User Interface Software and Technology, pages 13–22, Newport,
Rhode Island, 2007.

16. J. Hollan, E. Hutchins, and D. Kirsh. Distributed Cognition: Toward a
New Foundation for Human-Computer Interaction Research. ACM
Transactions on Computer-Human Interaction, 7(2):174–196, 2000.

17. A. Hunt and D. Thomas. The Pragmatic Programmer: From
Journeyman to Master. Addison-Wesley Professional, October 1999.

18. M. Kim, L. Bergman, T. Lau, and D. Notkin. An Ethnographic Study
of Copy and Paste Programming Practices in OOPL. In Proceedings
of ISESE 2004: IEEE International Symposium on Empirical Software
Engineering, pages 83–92, Redondo Beach, California, 2004.

19. A. J. Ko, B. A. Myers, and H. H. Aung. Six Learning Barriers in
End-User Programming Systems. In Proceedings of VL/HCC 2004:
IEEE Symposium on Visual Languages and Human-Centric
Computing, pages 199–206, Rome, Italy, 2004.

20. T. Lau and E. Horvitz. Patterns of Search: Analyzing and Modeling
Web Query Refinement. In Proceedings of UM 1999: International
Conference on User Modeling, pages 119–128, Banff, Alberta,
Canada, 1999.

21. H. Lieberman, F. Paternò, and V. Wulf. End-User Development.
Springer, October 2006.

22. G. Little and R. C. Miller. Translating Keyword Commands into
Executable Code. In Proceedings of UIST 2006: ACM Symposium on
User Interface Software and Technology, pages 135–144, Montreux,
Switzerland, 2006.

23. A. MacLean, K. Carter, L. Lövstrand, and T. Moran. User-Tailorable
Systems: Pressing the Issues with Buttons. In Proceedings of CHI
1990: ACM Conference on Human Factors in Computing Systems,
pages 175–182, Seattle, Washington, 1990. ACM.

24. D. Mandelin, L. Xu, R. Bodı́k, and D. Kimelman. Jungloid Mining:
Helping to Navigate the API jungle. In Proceedings of PLDI 2005:
ACM Conference on Programming Language Design and
Implementation, pages 48–61, Chicago, Illinois, 2005.

25. R. C. Martin. Agile Software Development, Principles, Patterns, and
Practices. Prentice Hall, 1st edition, 2002.

26. R. E. Mayer. The Psychology of How Novices Learn Computer
Programming. ACM Computing Surveys, 13(1):121–141, 1981.

27. B. Myers, S. Y. Park, Y. Nakano, G. Mueller, and A. Ko. How
Designers Design and Program Interactive Behaviors. In Proceedings
of VL/HCC 2008: IEEE Symposium on Visual Languages and
Human-Centric Computing, pages 177–184, 2008.

28. P. L. T. Pirolli. Information Foraging Theory. Oxford University
Press, Oxford, England, 2007.

29. N. Sahavechaphan and K. Claypool. XSnippet: Mining for Sample
Code. ACM SIGPLAN Notices, 41(10):413–430, 2006.

30. C. Scaffidi, M. Shaw, and B. A. Myers. Estimating the Numbers of
End Users and End User Programmers. pages 207–214, Dallas, Texas,
2005.

31. C. Silverstein, H. Marais, M. Henzinger, and M. Moricz. Analysis of a
Very Large Web Search Engine Query Log. ACM SIGIR Forum,
33(1):6–12, 1999.

32. J. Stylos and B. A. Myers. Mica: A Web-Search Tool for Finding API
Components and Examples. In Proceedings of VL/HCC 2006: IEEE
Symposium on Visual Languages and Human-Centric Computing,
pages 195–202, Brighton, United Kingdom, 2006.

33. S. Turkle and S. Papert. Epistemological Pluralism: Styles and Voices
within the Computer Culture. Signs: Journal of Women in Culture and
Society, 16(1), 1990.

34. J. Wong and J. I. Hong. Marmite: Towards End-User Programming
for the Web. In Proceedings of VL/HCC 2007: IEEE Symposium on
Visual Languages and Human-Centric Computing, pages 270–271,
2007.

35. R. B. Yeh, A. Paepcke, and S. R. Klemmer. Iterative Design and
Evaluation of an Event Architecture for Pen-and-Paper Interfaces. In
Proceedings of UIST 2008: ACM Symposium on User Interface
Software and Technology, Monterey, California, 2008.

CHI 2009 ~ Software Development April 8th, 2009 ~ Boston, MA, USA

1598

	Introduction
	Related Work
	Study 1: Opportunistic Programming in the Lab
	Method
	Results
	Intentions behind Web use
	Scaffolds for learning-by-doing
	Clarification of existing knowledge
	Reminders about forgotten details

	Study 2: Web Search Log Analysis
	Method
	Results
	Programmers rarely refine queries, but are good at it
	Query type predicts types of pages visited

	Discussion
	Five Key Insights and Implications for Tools
	Knowledge Work on the Web
	Limitations

	Conclusions and Future Work
	Acknowledgements
	Appendix: Query Log Analysis Method Details
	Determining Query Type
	Determining Query Refinement Method
	Determining Web Page Type

	References

