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ABSTRACT 
Interactive systems must respond to user input within se-
conds. Therefore, to create realtime crowd-powered inter-
faces, we need to dramatically lower crowd latency. In this 
paper, we introduce the use of synchronous crowds for on-
demand, realtime crowdsourcing. With synchronous 
crowds, systems can dynamically adapt tasks by leveraging 
the fact that workers are present at the same time. We de-
velop techniques that recruit synchronous crowds in two 
seconds and use them to execute complex search tasks in 
ten seconds. The first technique, the retainer model, pays 
workers a small wage to wait and respond quickly when 
asked. We offer empirically derived guidelines for a retain-
er system that is low-cost and produces on-demand crowds 
in two seconds. Our second technique, rapid refinement, 
observes early signs of agreement in synchronous crowds 
and dynamically narrows the search space to focus on 
promising directions. This approach produces results that, 
on average, are of more reliable quality and arrive faster 
than the fastest crowd member working alone. To explore 
benefits and limitations of these techniques for interaction, 
we present three applications: Adrenaline, a crowd-
powered camera where workers quickly filter a short video 
down to the best single moment for a photo; and Puppeteer 
and A|B, which examine creative generation tasks, commu-
nication with workers, and low-latency voting. 
ACM Classification: H5.2 [Information interfaces and 
presentation]: User Interfaces — Graphical user interfaces. 
General terms: Design, Human Factors  
Keywords: Crowdsourcing, Human computation 
INTRODUCTION 
Crowd-powered interfaces have demonstrated the potential 
to revolutionize interactive applications [2,3], but they are 
limited by the problem of crowd latency. Paid crowdsourc-

ing markets like Amazon Mechanical Turk allow us to em-
bed human intelligence inside applications like word pro-
cessors [2], question-answering services [3] and image 
search [28], but today crowdsourcing is only a reasonable 
choice if the user can wait a minute or more for a response. 
Existing “nearly realtime” techniques on average produce a 
single, unverified answer to a question in 56 seconds [3]. 
More complex workflows require 22 minutes or longer [2]. 
Users are not used to waiting, and will abandon interfaces 
that are slow to react. Search engine usage decreases linear-
ly as delays grow [21], and Jakob Nielsen argues that ten 
seconds is the maximum delay before a user loses focus on 
the interaction dialogue [20]. The much longer delays with 
crowdsourcing make it difficult for crowds to help with 
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Figure 1. Adrenaline is a camera that uses crowds to find 
the right moment for a picture by capturing ten-second mov-
ies. It looks for early agreement to filter the timeline down 
quickly to a single frame. A photo is typically ready about 
one second after the user reviews the movie. 

 

© ACM, 2011. This is the author's version of the work. It is posted here by permission of ACM for your personal use.
Not for redistribution. The definitive version was published in the Proceedings of UIST 2011.



 

 

tasks in the moment-to-moment workflow. For example, 
using crowds to create a smarter copy-paste command 
would be difficult: one minute waits between copying and 
pasting drive users away. We need new approaches if we 
want to realize the vision of the user pushing a button and 
seeing a crowd-powered result just seconds later.  
In this paper, we introduce recruitment strategies, algo-
rithms, and applications for realtime crowdsourcing. Our 
goal is to complete non-trivial crowdsourced computation 
within seconds of the user’s request — fast enough to feed 
back into an interface before the user loses focus. Realtime 
crowdsourcing can open up a broad new class of applica-
tions for crowd-powered interfaces.  
Our core contribution is to introduce on-demand synchro-
nous crowds as a key to realtime crowdsourcing. In syn-
chronous crowds, all crowd members arrive and work sim-
ultaneously. While prior work has focused on recruiting 
individual crowd members quickly (e.g., [3]), we believe 
that minimizing recruitment time is not enough. Even fast 
workers may not produce a first result for tens of seconds 
[3], and complex workflows require several minutes 
[23,28]. Worse, fast workers may not be available, and un-
predictable wait times hurt user experience. With synchro-
nous crowds, we can reliably execute complex search tasks 
within ten seconds of request. However, to do so, we need 
to recruit synchronous crowds on-demand and guide them 
to complete tasks effectively. 
To recruit on-demand synchronous crowds, we present the 
retainer model and a set of empirically derived guidelines 
for its use. It hires crowd members in advance, then places 
them on hold for low cost and alerts them when a task is 
ready. Our most effective design results in a majority of 
workers returning within two seconds and 75% within three 
seconds. The retainer model’s performance is striking in 
that it approaches human limits on the cognitive recognize-
act cycle and motor reaction times [4]. It nearly zeroes out 
wait times, which in previous work ranged from twenty 
seconds [3] to twenty minutes [2]. Most importantly, how-
ever, it makes on-demand synchronous crowds available as 
a new resource for crowdsourcing. 
Developers need ways to guide or program synchronous 
crowds for realtime results. We introduce rapid refinement, 
the first design pattern for synchronous crowds, which fo-
cuses on low-latency, reliable work. The fundamental in-
sight behind rapid refinement is that synchronicity enables 
an algorithm to recognize crowd agreement early. The rap-
id refinement design pattern quickly reduces a large search 
space by focusing workers’ attention to areas they are be-
ginning to agree on independently (Figures 1 and 4). Re-
peatedly narrowing the search space to an agreement region 
encourages quality results because it is built around inde-
pendent agreement. It also allows the interface to provide 
incremental, trustable feedback before a final answer is 
available. Critically, rapid refinement leads to fast results: 
faster than approaches that keep workers separate, and fast-
er on average than even the fastest individual worker. 

We use the retainer model and rapid refinement to explore 
new avenues for realtime crowd-powered interfaces 
through a system called Adrenaline. Adrenaline is a smart 
camera shutter powered by crowd intelligence: it finds the 
right moment to take a photo. Instead of taking a single 
shot, Adrenaline captures a short video — allowing the user 
to move around the scene, the subject to strike multiple 
poses, or action in the scene to unfold unpredictably — 
then uses rapid refinement to identify the best moment as a 
still photo about ten seconds later. Low latency means that 
users can preview and share photos they just took, like they 
would with any other digital camera. 
To investigate the larger design space of realtime crowd-
powered interfaces, we also present two other systems, 
Puppeteer and A|B. Puppeteer focuses on large-scale crea-
tive generation tasks, allowing a graphic artist or designer 
to fill a page with a large collection of crowd-posed figures 
(for example, a stadium of excited concert attendees or a 
full dance floor). The designer interacts directly with the 
crowd as they work, and sees the first results 2.1 seconds 
after request. A|B focuses on extremely low latency re-
sponses for A-or-B questions, allowing users to ask which 
clothes to wear, which font looks better, or which version 
of a sentence reads more clearly. A|B returns a histogram 
of five votes to the user in 5–7 seconds. 
This paper carries realtime crowdsourcing from recruit-
ment, through programming patterns, to applications. We 
make the following contributions: 
1. The retainer model, which produces synchronous 

crowds by recruiting workers in advance and alerting 
them when work is available. We present empirically 
derived design guidelines for retainer systems. 

2. The rapid refinement programming pattern, which 
looks for emerging agreement in synchronous crowds 
to narrow down a large search space to a single result. 

3. Adrenaline, a realtime crowd-powered camera that 
crowdsources the selection of the best photographic 
moment in a short movie in roughly ten seconds. Pup-
peteer and A|B extend these ideas into creative design 
tasks, opinion tasks, and online feedback to workers. 

We implement these ideas on Amazon’s Mechanical Turk 
platform. However, we also suggest ways that realtime 
crowdsourcing techniques might impact future platforms. 
The remainder of this paper proceeds as follows. We first 
survey related work on systems and studies that gather 
crowds for quick results. We then introduce the retainer 
model and describe several experiments exploring its effec-
tiveness. We introduce Adrenaline, and use it to motivate 
and explain the rapid refinement design pattern. We evalu-
ate Adrenaline to test the effectiveness of our approach, and 
finally introduce Puppeteer and A|B to demonstrate the 
reach of realtime crowd-powered interfaces. 



 

 

RELATED WORK 
The work presented in this paper builds upon research on 
low-latency crowdsourcing, synchronous crowds, and 
crowd-powered interfaces. 
Latency in Crowdsourced Tasks 
An important thread of work models and influences wait 
times on crowdsourced task markets. We use several of 
these techniques, then push beyond single workers to 
crowds and from half-minute results to 5–10 second results.  
Reducing task completion time has become one of 
crowdsourcing’s holy grails. Increased payment leads to 
higher work output, which translates to faster completion 
times [19]. Task type (e.g., audio transcription vs. product 
review) impacts completion time in long-running tasks, but 
time of day and day of week have a much weaker effect 
[27]. quikTurKit recruits workers in advance to solve old 
tasks, then replaces the old tasks with new work when re-
quests arrive. It also re-posts tasks to keep them near the 
top of the “most recent” ordering, which is a popular view 
that workers use to find tasks [5]. We adopt versions of 
both these techniques in Adrenaline, then introduce new 
techniques to gather crowds simultaneously, reduce vari-
ance in lag times, and reduce wait times by a factor of ten 
— without added cost. 
No work to our knowledge has investigated ways to reduce 
latency once workers arrive. This is the focus of the rapid 
refinement algorithm. 
Synchronous Crowds 
In addition to low-latency crowdsourcing, researchers have 
begun investigating synchronous, collaborative crowds. 
Our work introduces the notion that low-latency crowds 
can enable synchronous crowds on demand, and that algo-
rithmic designs can coordinate synchronous crowds 
through complex workflows quickly. 
The ESP Game pioneered the use of multiple individuals 
working simultaneously on human computation tasks [26]. 
Our work adopts the game’s notion of simultaneous inde-
pendent agreement, as well as the idea of replaying old 
episodes when there are no collaborators. 
Synchronous online experiments have gathered some of the 
largest simultaneous crowds so far. One approach is to 
build a panel of workers prior to the study, e-mail the night 
before the study, and recruit three times as many workers 
as needed [18]. The retainer model is a more sustainable, 
shorter-term variant of the waiting room in this approach. 
Our work recruits somewhat smaller crowds, but needs 
orders of magnitude less time to do so. 
Finally, synchronous crowds open up the possibility for 
crowd collaboration. For example, Mao et al. used Mason 
and Suri’s techniques to recruit crowds to solve distributed 
problems like graph coloring [17]. Kittur used collaborative 
text authoring software to enable collaborative text transla-
tion, finding that workers would coordinate and communi-
cate with each other while working [13]. The Shepherd 
system likewise recognizes that workers overlapping in 

time could provide synchronous peer feedback [7]. The 
retainer model can bring crowds of this kind together rela-
tively quickly, further enabling this kind of work. Many of 
these techniques draw on synchronous group collaboration 
research (e.g., [8,11]). 
Crowd-Powered Interfaces 
Our work aims to break ground on a new class of realtime 
interactivity in crowd-powered interfaces. There are cur-
rently two approaches to managing latency in crowd-
powered interfaces: streaming and batching results. Stream-
ing is used by VizWiz [3] and CrowdSearch [28]: they re-
turn work to the user, unfiltered, as soon as it is available. 
Streaming returns work relatively quickly. However, be-
cause the system does not have time to aggregate answers, 
it cannot perform much quality control via redundancy, and 
it tends not to use complex workflows. Soylent [2] takes a 
second approach, batching: it waits longer, but has the time 
to execute a multi-stage workflow and combine all results 
into a single interface. Our work is closer to a batching 
approach, but it shortens batch time to a few seconds.  
High-frequency batching enables workflows while still 
providing feedback to the user every few seconds. 
Adrenaline, Puppeteer and A|B use the crowd to expand on 
previous applications. Adrenaline shares the goals of the 
Moment Camera [6] by recording continuously and using 
crowds to make the hard semantic decision of what is a 
good photo. The Moment Camera and Adrenaline comple-
ment each other: computational photography can check 
whether subjects’ eyes are open and can tune camera set-
tings, but it is only trained on certain classes of images and 
it is much harder to train an algorithm to make subjective 
judgments. Puppeteer gives the crowd a rigid shape defor-
mation tool [10], then relies on the crowd to generate plau-
sible deformations based on a text description. It is inspired 
by projects like The Sheep Market [14], and introduces 
crowd assistance as part of the tight loop of the creative 
process. Furthermore, it allows the user to interact with the 
workers as they explore. A|B gathers opinions quickly from 
multiple independent people, as suggested by Surowieki 
[24], though it focuses on subjective assessment rather than 
guesses at factual questions. Toomim [25] used crowds to 
evaluate alternatives more thoroughly, though with much 
longer latency. 
ADRENALINE: A REALTIME CROWD-POWERED CAMERA 
“You must know with intuition when to click the camera. 
That is the moment the photographer is creative. […] The 
Moment! Once you miss it, it is gone forever.”  
— Henri Cartier-Bresson [1], 1957  
Novice photographers often struggle to capture what Car-
tier-Bresson called The Decisive Moment. The instant when 
the shutter opens, the subject might have broken into an 
awkward smile, the angle might be poor, or the decisive 
moment might have passed. As a result, photos taken by 
novices can feel stilted or ‘off’. Experienced photographers 
learn to compensate by taking many photographs — tens of 
photos rather than one — then sorting through them later to 



 

 

find the gem. They try multiple angles, capture photos over 
several seconds, or ask subjects to strike different poses. 
Adrenaline is a realtime crowd-powered camera that aims 
to find the most photogenic moment by capturing many 
alternatives. Rather than taking a single photo, Adrenaline 
captures a ten-second movie and recruits a crowd to quick-
ly find the best photographic moment in the movie (Figure 
1). Within five seconds after the movie is captured, the user 
can see crowd members exploring the timeline (colored 
triangles in Figure 1). A few seconds later, the user can see 
that the crowd has narrowed down to a small fraction of the 
timeline, then again to a few adjacent frames, and finally to 
a final photo in a total of about eleven seconds. This means 
that a final photo is ready just moments after the user fin-
ishes reviewing the movie they just captured. 
Adrenaline’s goal is to mimic the instant-review capabili-
ties of cameras today. Seeing a photo quickly means that 
users can take another photo if they want, show it instantly 
to friends, or post it to the web. The visceral thrill of novice 
photography can be lost when the photo is not available for 
minutes or days. Many novices never review the pile of 
extra photos, so we believe that is extremely important to 
complete the image selection process while Adrenaline still 
has the user’s attention. 
Existing crowdsourcing techniques cannot support Adrena-
line’s goal of 10–12 second latency. To achieve this, we 
introduce the use of synchronous crowds via the retainer 
model for recruitment, and the rapid refinement algorithm 
to guide the search process quickly and reliably. 
RETAINER MODEL 
To power realtime applications like Adrenaline, we need to 
gather not just one individual but an entire crowd quickly: a 
synchronous, ‘flash’ crowd. We would like the crowd to 
turn their attention to our task as soon as it is available, and 
to do so without paying for more tasks than necessary.  
While it was clear from our explorations that workers 
would respond more quickly when paid money, it was not 
certain that they could respond fast enough for an interac-
tive system. How should a retainer system be designed to 
1) guarantee a fast response time, 2) be cheap enough to 
scale, and 3) maintain that response time after a long wait? 
In this section, we introduce the retainer model for syn-
chronous crowdsourcing and empirically derived design 
guidelines for its use. This approach solves all three issues 
by placing workers on retainer — signed up to do work 
when it is available — for a small fee, then allowing them 
to pursue other work while they wait. When the user makes 
a request, the retainer model alerts the workers. Our de-
signs result in a majority of workers returning two seconds 
after request, all together, enabling synchronous crowds.  
Retainer Design and Wait Time 
Workers agree to be put on retainer by accepting the task. 
They are given task instructions and an example, and told 
that they will be alerted when a task is ready. We scale the 
task price up by expected wait time, usually 0.5¢–1¢ per 

minute on retainer. After workers agree, they are free to 
leave the browser tab open and pursue other work.  
The worker’s browser polls a work server to see if tasks are 
available. When a user posts a task, the work server notifies 
the client, and the client’s browser issues a Javascript 
alert() and an audio chime to signal the worker. Optionally, 
the work server may also offer a small bonus to reward 
quick responses. Workers dismiss the alert when they ar-
rive, then begin the task. If no new tasks are ready by the 
end of the retainer period, the retainer model gives workers 
an old task to perform. As work arrives more consistently, 
however, the chances of this happening become lower. 
Retainer Field Experiments 
Can workers react quickly enough to support a realtime 
application, especially when they may be distracted with 
other tasks? This section describes field experiments of the 
retainer model that investigate its effectiveness. 
We created a benchmark Mechanical Turk task that in-
structed workers to click on all the verbs in a random para-
graph from a blog or a book. Workers were told that the 
task would be ready within a specific retainer time limit, 
then the web page began an invisible countdown that sam-
pled randomly between zero seconds and the maximum 
retainer time. When the countdown finished, the page alert-
ed the worker and showed a task. We prevented workers 
from accepting more than one of our tasks at a time. 
Study 1: Retainer Time 
To test how long we could keep workers primed, we exper-
imentally manipulated retainer time to vary between 0.5, 1, 
2, 5, 10, and 30 minutes. We scaled payment roughly line-
arly with retainer time: 2¢, 3¢, 4¢, 7¢, 12¢, and 32¢. We 
hypothesized that worker response time would increase 
after 1–2 minutes, as workers stopped monitoring the page. 
To reduce the chance that workers would see multiple price 
points for the same task, we posted each set at different 
hours. We ran the experiment over a period of six days, in 
six separate one-hour periods each day, and randomized the 
order of conditions. A total of 280 workers completed 1545 
tasks. We removed and rejected 103 tasks because they 
disagreed significantly with our ground truth. 
Results. For retainer times under ten minutes, 46–61% of 
workers dismissed the alert within two seconds and 69–
84% of workers dismissed the alert within three seconds. 
These curves in Figure 2 asymptote to a completion rate of 
83–87%: the rest of the workers never returned to complete 
the task. Retainer times of ten minutes or more resulted in 
much lower completion rates, 49–66%. The median time 
between dismissing the alert and completing the first in-
cremental piece of work (clicking on a verb) was 3.35 se-
conds across all conditions. 
These results suggest that for wait times under ten minutes, 
we could expect to produce a crowd in two seconds, and a 
larger crowd in three seconds. In the next study, we inves-
tigate how to improve response time and completion rates 
further through retainer designs. 



 

 

Study 2: Alert Design 
While Study 1’s results are already good enough to get a 
crowd quite quickly, can we improve on them by changing 
the reason that workers would pay attention? Can we incen-
tivize the slow workers to move more quickly? 
We investigated design and financial incentives to shift the 
curve so that more workers came within the first 2–3 se-
conds. We used the 12¢ 10-minute retainer condition from 
Study 1, which exhibited a low completion rate and a slow-
er arrival rate. The alert condition functioned as in Study 1, 
with a Javascript alert and audio chime. Bonuses can be 
powerful incentives [19], so we designed a reward condi-
tion that paid workers a 3¢ bonus if they dismissed the alert 
within two seconds. Two seconds is short enough to be 
challenging, but not so short as to be out of reach. To keep 
workers’ attention on the page, we created a game condi-
tion that let workers optionally play Tetris during the wait-
ing period. Finally, to isolate the effectiveness of the Javas-
cript alert, we created a baseline condition that displayed a 
large Go button but did not use an audio or Javascript alert. 
We hypothesized that the bonus and game conditions might 
improve response time and completion rate. 
For Study 2, we implemented a between-subjects design by 
randomly assigning each worker to a condition for the same 
verb-selection task. We posted tasks for four hours per day 
over four days. Workers completed 1913 tasks — we re-
moved 90 for poor work quality. 
Results. Paying a small reward for quick reactions had a 
strong positive impact on response time (Figure 3). In the 
reward condition, 61% of workers responded within two 
seconds vs. 25% in the alert condition, and 74% responded 
within three seconds vs. 50% in the alert condition. Rough-
ly speaking, the ten-minute retainer with reward had similar 
performance to the two-minute retainer without reward. In 
addition, workers in the reward condition completed 2.25 
times as many tasks as those in the alert condition (734 vs. 

325), suggesting that the small bonus has a disproportion-
ately large impact on work volume. Predictably, the base-
line condition without the alert dialog performed poorly, 
with 19% returning within three seconds. The game was 
not very popular (5.7% of completed tasks cleared a row in 
Tetris), but had a small positive impact on reaction times. 
Retainer Model Discussion 
Our data suggest that the retainer model can summon a 
crowd two seconds after the request is made. In exchange 
for a small fee, the retainer model recalls 50% of its work-
ers in two seconds and 75% in three seconds. Though reac-
tion times worsen as the retainer time increases, a small 
reward for quick response negates the problem. Our exper-
iment commonly produced 10–15 workers on retainer at 
once, suggesting that users could fairly reliably summon a 
crowd of ten within three seconds. Applications with an 
early indication that the user will want help (for example, a 
mouseover on the icon or an “Are You Sure?” dialog) can 
eliminate even this delay by alerting workers in advance. 
The cost of the retainer model is attractive because it pays 
workers a small amount to wait, rather than spending mon-
ey to repeat old tasks. The cost of the retainer model de-
pends on the desired arrival time !, the empirical arrival 
distribution !(!""#$% ≤ !) as in Figure 2, and the desired 
workers !. The number of retainer workers ! needed is: 

! =
!

!(!""#$% ≤ !) 

For example, to recruit 5 workers within 3 seconds in the 
ten-minute retainer with reward, the system should place 8 
workers on retainer (rounded from 7.8), then expect that 7 
will return to complete the task and 4 will earn rewards.  
Assuming that we set the retainer length longer than the 
expected time period between requests !, the hourly (60-
minute) cost of the retainer model depends on the retainer 
wage per minute !!, and the base cost for the task !!: 

 
Figure 3. A small reward for fast response (red) led workers 
in a ten-minute retainer to respond as quickly as those on a 
two-minute retainer without reward (Figure 2, red). N=1913. 

 Baseline Alert Game Reward 
Median  36.66 s 3.01 s 2.55 s 1.68 s 
3rd quartile — 6.92 s 5.01 s 3.07 s 
Completion 64.2% 76.5% 76.7% 85.5% 

Table 2. A tabular representation of Figure 2. 

 
Figure 2. For retainer times under ten minutes, a majority of 
workers responded to the alert within two seconds and 
three-quarters responded within three seconds. N=1442. 

 30 sec 1 min 2 min 5 min 10 min 30 min 
Median  1.77 s 1.77 s 1.91 s 2.18 s 3.34 s 10.32 s 
3rd quartile 2.44 s 2.39 s 3.46 s 3.75 s — — 
Completion 86.6% 87.2% 82.9% 75.1% 66.4% 49.4% 

Table 1. A tabular representation of Figure 1. 
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Paying a half-cent per minute on retainer and with no wast-
ed tasks, one worker on retainer costs 30¢ per hour. 
RAPID REFINEMENT: COORDINATING SYNCHRONOUS 
CROWDS FOR FAST RESULTS 
Once recruitment times are negligible, slow work time 
dominates the user experience. Even straightforward tasks 
like question-answering can take thirty seconds under good 
conditions [3], and the wait can be much longer before 
there are enough answers to make a clear judgment. 
The problem is not just one of minimum response time, but 
also one of variance. Time variance means that wait time 
will not be reliable: it will depend on whether the system 
happened to recruit a fast worker. That worker may also 
produce low quality results. Worse, nontrivial human com-
putation algorithms (e.g., [16]) often wait for several results 
before proceeding: it is even less likely that a system would 
recruit multiple fast workers. We could require workers to 
finish within a short time limit, but our experience is that 
this is stressful to workers and leads to poor results. 
To complete nontrivial crowdsourcing tasks in realtime, we 
must develop new algorithms and programming patterns to 
return quality results quickly and reliably. Like traditional 
randomized algorithms, we may be willing to sacrifice 
some amount of comprehensiveness for faster runtime. 
The insight behind our solution is that low-latency crowds 
are synchronous crowds: all workers are working simulta-
neously. Synchronous crowds can interact with, influence, 
and communicate with each other and the user. In most on-
demand crowdsourcing approaches, workers do not overlap 
in time enough for synchronous designs to make sense. 
However, the retainer model makes it practical to assume, 
for the first time, that the crowd is all present simultaneous-
ly a few moments after request. So, rather than waiting for 
all results in order to continue, a realtime algorithm has the 
opportunity to influence the process as it takes place.  
We take advantage of synchronous crowds by recognizing 
potential agreement early on, while workers are still explor-
ing, and then focusing workers’ attention on the area of 
agreement. The insight is that the majority of Turkers who 
are efficient satisficers [22] can guide the process: these 
workers decide on the gist of the solution quickly, but can 
take time to commit to a final answer. Rapid refinement 
recognizes when several workers are likely to agree and 
commits for them by focusing the task on that area. Fast 
workers will still find an answer quickly and contribute to 
the vote, whereas slow workers benefit from the focus on a 
smaller search space. In the next section, we will describe 
the rapid refinement algorithm that implements this idea. 
Algorithm Design 
The rapid refinement algorithm repeatedly narrows down a 
search region to a fraction of its existing size when it senses 
that workers independently agree on the subregion (Figure 
4). It is appropriate for a variety of search-oriented human 
computation tasks. 

Rapid refinement begins with the entire search space avail-
able and workers initialized to a random position. The algo-
rithm takes place in phases where each phase narrows to a 
smaller search region. Workers trigger a new phase by in-
dependently focusing on the same area for a period of time. 
The algorithm depends on three values: the agreement 
range !, agreement time !, and agreement amount !. If a 
fraction ! of the workers stayed within a range less than a 
fraction ! of the existing search area for at least ! seconds, 
rapid refinement declares agreement. It then shrinks the 
search space to match the agreement range and begins a 
new phase. Workers are no longer able to explore the out-
of-bounds area, and must try to agree within the new re-
gion. This process repeats until convergence. To approve or 
reject work, rapid refinement looks at whether the worker 
agreed with at least one phase change. 
In Adrenaline, the algorithm begins with the entire video 
timeline. Workers vote on a good photo using their timeline 
slider. They cannot see others’ sliders, which encourages 
independent agreement [24]. When at least 33% of the 
workers have been in the same 25% of the timeline for at 
least 2 seconds, Adrenaline declares agreement. These val-
ues can be adjusted to trade off delay for false positives. 
With these values, Adrenaline converges in 3–4 phases per 
video. The first phase is the slowest, and agreement accel-
erates as workers’ attention is focused on one area. 
The rapid refinement algorithm has several benefits aside 
from speed. First, it produces preliminary results that can 
be returned to the user early. Early results reduce interface 
latency and allow the user to provide feedback on the pro-
cess. Second, it combines work and verification into one 
stage, which saves cost and time for a separate verification 
step. Third, workers tailor their votes toward what someone 
else might think, which minimizes individual bias [9]. 
Rapid refinement makes tradeoffs. First, the algorithm may 
focus too early on a single part of the search space, espe-

 
Figure 4. Rapid refinement repeatedly shrinks the working 
area for all workers when it detects that several independent 
workers are exploring the same area.  



 

 

cially if the low quality workers are the first to respond. 
With four or more workers, it is possible to fork the crowd 
into two simultaneous groups to help avoid this problem. 
Forking the crowd has the additional benefit that the algo-
rithm can explore multiple promising paths at the same 
time. Second, it may stifle individual expression: talented 
workers might be forced to agree with the majority. A fu-
ture system could recognize such workers and give them 
more weight in the votes.  
A slight modification to the algorithm can guarantee con-
vergence. In particular, systems can increase the agreement 
fraction ! as time passes in each phase. Then, given at least 
three workers, the algorithm will always converge. 
EVALUATION 
We have argued that the retainer model and rapid refine-
ment combine in Adrenaline to produce a realtime crowd-
powered interface by controlling variance in wait time and 
quality. In this section, we report on an evaluation of 
Adrenaline that evaluated this claim, stress-tested the re-
tainer model and rapid refinement, and investigated wheth-
er end users understand the system. 
Method 
We recruited 24 participants through e-mail lists in ex-
change for a $20 gift certificate. Fourteen were male and 
ten were female, and the median age was 25. About half 
had taken a photograph on a cell phone camera or consum-
er camera in the past month, and five had taken pictures on 
a DSLR camera in the past month. The typical participant 
was a young, technically competent student who had a 
moderate interest in photography as a hobby (median Likert 
response: 4/7). Participants arrived to the study in pairs. 
We gave each participant a smartphone with Adrenaline 
installed and introduced them to the application. We did not 
allow participants to immediately see the still photos that 
Adrenaline chose, so that we could compare rapid refine-
ment to other approaches. Participants began by taking a 
video portrait of their partner. Then, the pair spent fifteen 
minutes in a public area capturing videos of people, ac-
tions, or landscapes. Finally, participants chose two videos 
in addition to the portrait to submit for the evaluation. 
On a weekend afternoon, we generated candidate photo-
graphs using the following computational, expert, and 
crowdsourced approaches: 
• Rapid Refinement: we required five workers to be on 

retainer before labeling each video. 
• Generate-and-Vote: a standard crowdsourcing ap-

proach [15] in two stages. First, five retainer workers 
independently selected a frame in the video. Then, 
keeping the fastest three results returned, we use eight 
retainer workers to vote on the best photo of the three. 

• Generate-One: using the same dataset as Generate-
and-Vote, this condition simulated stopping the pro-
cess as soon as the first worker submitted a photo. 

• Photographer: a professional photographer labeled the 
best still frame in each video. 

• Computer Vision: the still frame selection algorithm on 
YouTube, which uses recent computer vision research 
algorithms [12]. 

We used the quikTurKit technique to repeatedly post tasks 
and keep work near the top of the Mechanical Turk task 
list, then implemented a five-minute retainer and a 2¢ bo-
nus for quick response. We paid 4.5¢ on average for a rapid 
refinement or generate task (quikTurKit posts tasks at mul-
tiple price points simultaneously), and 3.5¢ on average for 
a vote task. Including bonuses and removing one worker on 
average who never responded to the retainer, these costs 
added up to 4(4.5¢) base + 2(2¢) bonus = 22¢ per video for 
the rapid refinement and generate tasks. Voting added eight 
workers: we estimated 7 would appear and 3 would earn 
the bonus, for an additional 31¢. So, rapid refinement and 
generate-one cost 22¢ per video, and generate-and-vote 
cost 53¢ per video. In a live system, it would be feasible to 
use fewer workers and pay closer to 10¢ rather than 22¢. 
On Mechanical Turk, we posted half of the videos first in 
the rapid refinement and generate-and-vote conditions to 
compensate for order effects. 
We then contacted all of our participants and asked them to 
rate each still photo on a 9-point Likert scale. We instructed 
participants to ignore aspects of the picture like contrast 
and color that could be computationally improved. 
Results 
We used the retainer model to post each video as soon as 
there were five workers on retainer, stress-testing the vol-
ume of the retainer model. Adrenaline had enough workers 
to label a video every 45 seconds (median). Worker arrivals 
were bursty, but the median time between retainer arrivals 
was 6.3 seconds. The median time between unique worker 
arrivals was 48.8 seconds. These numbers are dependent on 
the current workforce state of Mechanical Turk, and will 
change as the market grows or more tasks use retainers. 
Timing. Table 3 lists our results. Rapid refinement returned 
the fastest results, with a median total time of 11.6 seconds 
(µ=12.6, σ=4.3). Generate-One, which used the first availa-
ble photo was a few seconds slower, with a median time of 
13.6 seconds (µ=16.3, σ=9.8). Generate-One’s timing 
standard deviation was nearly twice that of rapid refine-
ment. These variances are significantly different from each 
other, F(71, 71)=5.17, p<0.001. 
The timing data is non-normal, so we square-root trans-
formed it to satisfy normality assumptions. An ANOVA 
comparing the delay for the three human computation algo-
rithms is significant F(2, 213) = 278.11, p < .001, and post-

 Delay Quality 
 Median Mean 9pt Likert 
Computer Vision – – 4.9 σ=2.2 
Generate and Vote 41.9 45.3 σ=14.0 6.6 σ=2.1 
Generate One 13.6 16.3 σ=9.8 5.9 σ=2.6 
Professional Photographer – – 6.4 σ=2.3 
Rapid Refinement  11.6 12.6 σ=4.3 5.8 σ=2.2 
Table 3. Rapid Refinement was the fastest algorithm and 
had the lowest timing variance, though it sacrificed slightly 
on quality compared to Generate-and-Vote. 



 

 

hoc pairwise Tukey comparisons confirmed that all condi-
tions were significantly different than each other (all p < 
.05), confirming that rapid refinement is fastest. 
Figure 5 outlines the median timing distributions of a rapid 
refinement process. One worker typically arrived 2.2 se-
conds after the video was uploaded, and the second and 
third came within 2.6 seconds. At least two workers were 
moving their sliders by 5.3 seconds after request. After the 
crowd began exploring, agreement took 4.7 seconds in the 
first phase. The median first phase completed a total of 
10.05 seconds after request (µ=10.65, σ=3.0). The follow-
ing phases lasted 0.75 seconds each, typically. These phas-
es moved more quickly because workers were often already 
agreeing on a small area when the first phase completed.  
Quality. Quality ratings tell an unexpected story. Partici-
pants’ ratings had high variance, making it difficult to draw 
statistical conclusions (Table 3). However, Generate-and-
Vote appears to match or beat the Photographer condition. 
While we believe that a photographer would take better 
pictures given the opportunity to operate the camera, it ap-
pears that an unskilled crowd may be equally talented at 
selecting good moments. Generate-One also performed 
better than expected, roughly matching Rapid Refinement. 
As with timing, however, Generate-One was less reliable 
and had a higher variance. The Computer Vision approach 
was the least successful, which suggests that using crowds 
in a subjective photo quality task is a good match. 

Study Discussion 
This study suggests that rapid refinement guides crowds of 
two to five people to select a good photo faster than even 
the fastest member of a similar-size group. We might ex-
pect that workers would conflict, stalemate and disagree 
with each other. However, bottlenecks were uncommon, 
especially with more than two crowd workers. This result 
suggests that, rather than interfering with each other, syn-
chronous crowds may hold significant promise for explor-
ing new forms of cooperation and collaboration (e.g., [13]). 
Quality may be the most salient issue with rapid refine-
ment: its photos were of reasonable quality, but it did not 
match Generate-and-Vote. One common source of error 
was too-fast agreement in the later phases. Sometimes the 
algorithm decided that workers agreed in the second phase 
before they had adequate time to explore the timeline and 
make a decision. We have prototyped designs to compen-
sate for this: for example, requiring that workers explore a 
minimum fraction of the range before their votes are count-
ed, or requiring a minimum time lapse between phases. 
These approaches empower the designer to trade off in-
creased lag in exchange for better quality. 
A second issue is that rapid refinement uses constants that 
may depend on task, crowd size and the number of items 
being explored. For example, constants that work well for 
small crowds of 3–5 may act differently when 10–15 crowd 
members arrive. A more principled approach would treat 
workers’ locations as populating a probability density func-
tion over frames. Then, measures of distribution 
peakedness, like kurtosis, would likely ease this problem.  
The retainer model was more aggressive than necessary. 
Often workers joined midway through the process, result-
ing in more workers than needed. Given a sufficiently busy 

system, we might re-route late-
comers from a retainer into a dif-
ferent task. Alternatively, there 
may be design patterns that place 
latecomers into a complementary 
role in the computational process, 
like vetting. 
OTHER REALTIME APPLICATIONS 
In this section, we expand the de-
sign space of realtime crowd-
powered interfaces beyond Adrena-
line. We introduce two applica-
tions, Puppeteer and A|B, to ex-
plore questions of creative content 
generation and even lower latency. 
Puppeteer: Creativity and  
Creation in Seconds 
Realtime crowds can thread crea-
tion tasks into user interfaces as 
well. Puppeteer (Figure 7) works in 
conjunction with Adobe Photoshop 
to support large-scale content gen-
eration and synchronous feedback 

 
Figure 6. Photos from the Adrenaline study. The examples are good, typical, and bad 
photos that rapid refinement recommended. The computer vision and photographer 
columns demonstrate how other approaches performed on the same movie.  

 
Figure 5. Timeline of the median Adrenaline execution. 



 

 

to workers. Artists often want to create a large number of 
believably varying objects, like an excited audience at a 
concert or flowers in a field. Algorithmic techniques to 
generate poses may not be realistic, semantically meaning-
ful, or generalizable to new objects.  
Puppeteer users specify control points on an image using 
Photoshop’s Puppet Warp tool [10] (Figure 7a). Users give 
a textual description of their goal (e.g., “Make the person 
look like he is dancing”), then workers each pose three fig-
ures to match the goal. As workers progress, the user ob-
serves them through a small multiples interface (Figure 7c). 
Then, because of the realtime nature of the application, the 
user can communicate with workers (e.g., “Can you make 
another one more like your first?”) These poses can be im-
ported back into Photoshop to arrange the final result. 
As an illustrative example, we simulated a user request to a 
large number of Puppeteer workers that they pose a human 
stick figure so that it looked excited. After they finished 
two puppets, we programmatically prompted workers with 
a request to make the third figure look like it is jumping. 
Anecdotally, the message was quite effective — the majori-
ty of workers’ third puppets appeared to be jumping where-
as the first and second puppets were rarely doing so. 
To understand the latency and total throughput of Puppet-
eer, we repeated the “excited” task, but removed the 
prompt. We began the task when there were 8 workers on 
retainer, received the first control point movement 2.1 se-
conds later, and received the first completed figure in 25.0 
seconds. The first worker completed the entire task (3 pup-
pets) in 46.1 seconds. Workers completed 300 puppets in 
16 minutes and 35 seconds, or one puppet every 3.3 se-
conds. Work output rate was relatively constant throughout. 
A/B: Instant Crowd Feedback 
It can be hard to escape from our own biases when we try 
to predict what others will think. Crowds are certainly good 
at having opinions, but high latency makes them less useful 

for snap decisions. A|B is our lowest-latency crowd feed-
back platform. The user asks a question and takes two pic-
tures, then a histogram of crowd feedback appears mo-
ments later. A user might try on two different sweaters, 
take pictures of each, and ask which one looks better; an 
artist might sketch two different versions of a character and 
ask which one looks more engaging; a designer might want 
fast aesthetic feedback on a sketch.  
In our tests with eight workers on retainer, A|B returned 
five opinions in as little as five seconds. 
DISCUSSION 
In this section we explore the implications and limitations 
of realtime crowdsourcing. 
Synchronous crowds and rapid refinement open the door to 
many applications and techniques. Crowdsourcing has 
largely been confined to divide-and-conquer tasks, but syn-
chronous crowds enable coordination and collaboration on 
a new set of problems. Such crowds can edit documents 
simultaneously (e.g., [13]), work on team tasks, and dis-
tribute large tasks in new ways. Rapid refinement also has 
applications in other search tasks. For example, rapid re-
finement might power a predictive mobile web browser that 
uses crowds to search the page for the user’s next action 
and offer swipe-to-complete for that action, or redesign 
Soylent’s Find task [2] as a synchronous, parallel process.  
Larger, non-visual search spaces are another avenue for 
future work. If it is harder for workers to skim the items or 
the search space is very large, agreement will be sparser. 
We are interested in separating tasks into overlapping seg-
ments to address this problem. The core interface insight is 
to stop workers from worrying about deciding on one right 
answer and instead quickly call out promising areas. 
We envision a future where crowdsourcing markets are 
designed for quick requests. A centralized system could use 
queueing theory to manage the worker pool and decide 
when to hire. Queueing theory makes assumptions about 

 
Figure 7. Puppeteer allows an artist or designer to generate a group of articulated figures quickly, and to interact with workers 
as they work. a) The user demonstrates control points. b) Workers move control points to match a request, like “make the per-
son look excited!” c) The user watches incoming results and interacts with workers. d) The final result in Photoshop. 



 

 

the distribution of worker arrivals, request arrivals and 
work times that would imply how many workers to put on 
retainer in advance. Workers could follow tasks they liked, 
saving them time searching the task list, and be on call for 
several tasks simultaneously. The system could then route 
workers to tasks where they are needed most. 
Until we have such a large-scale realtime crowdsourcing 
platform, scale remains an issue. Our experiments in April 
2011 found it relatively straightforward to recruit 8–15 
workers on retainer, but if thousands of users began using 
Adrenaline, it might exhaust the worker pool. Given suffi-
cient demand, however, more workers would likely enter 
the market in exchange for higher wages. Successful 
realtime services might eventually recruit their own full-
time crowds like ChaCha [www.chacha.com]. 
CONCLUSION 
This paper introduces techniques for realtime crowdsourc-
ing and its applications in user interfaces. Where the fastest 
crowd-powered interfaces used to be limited by a median 
response time of nearly a minute [3], we show that it is 
possible to recruit a crowd within two seconds, get that 
crowd to answer a simple query within five seconds, and 
complete a complex search in roughly ten seconds. We 
presented Adrenaline, a realtime crowd-powered mobile 
phone camera that captures several seconds of video, then 
uses the crowd to quickly find the best still photo in the set.  
Our solution is to introduce on-demand synchronous 
crowds, where workers arrive and work simultaneously. To 
create on-demand synchronous crowds, we present the re-
tainer model of recruitment, which pays workers a small 
amount to come quickly when asked, and a set of empiri-
cally derived design guidelines for its use. With synchro-
nous crowds, algorithms can identify regions of likely 
agreement before workers would normally select a final 
answer. This intuition led to rapid refinement, a design pat-
tern that focuses the search space on areas of emerging 
agreement to quickly narrow complex search tasks. The 
combination of these two ideas enable reliably fast turna-
rounds for Adrenaline — ten seconds to a preview and the 
final photo a second or two later. This speed is on average 
faster than even the fastest individual worker. Finally, we 
extended the design space of realtime crowd-powered inter-
faces with A|B and Puppeteer, which achieved an even 
lower latency of five seconds to five responses and embed-
ded crowd contributions directly in an authoring interface. 
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