

Crowds in Two Seconds:
Enabling Realtime Crowd-Powered Interfaces

Michael S. Bernstein1, Joel Brandt2, Robert C. Miller1, and David R. Karger1
1 MIT CSAIL

Cambridge, MA 02139
{msbernst, rcm, karger}@csail.mit.edu

2 Adobe Systems, Advanced Technology Labs
San Francisco, CA 94103
joel.brandt@adobe.com

ABSTRACT
Interactive systems must respond to user input within se-
conds. Therefore, to create realtime crowd-powered inter-
faces, we need to dramatically lower crowd latency. In this
paper, we introduce the use of synchronous crowds for on-
demand, realtime crowdsourcing. With synchronous
crowds, systems can dynamically adapt tasks by leveraging
the fact that workers are present at the same time. We de-
velop techniques that recruit synchronous crowds in two
seconds and use them to execute complex search tasks in
ten seconds. The first technique, the retainer model, pays
workers a small wage to wait and respond quickly when
asked. We offer empirically derived guidelines for a retain-
er system that is low-cost and produces on-demand crowds
in two seconds. Our second technique, rapid refinement,
observes early signs of agreement in synchronous crowds
and dynamically narrows the search space to focus on
promising directions. This approach produces results that,
on average, are of more reliable quality and arrive faster
than the fastest crowd member working alone. To explore
benefits and limitations of these techniques for interaction,
we present three applications: Adrenaline, a crowd-
powered camera where workers quickly filter a short video
down to the best single moment for a photo; and Puppeteer
and A|B, which examine creative generation tasks, commu-
nication with workers, and low-latency voting.
ACM Classification: H5.2 [Information interfaces and
presentation]: User Interfaces — Graphical user interfaces.
General terms: Design, Human Factors
Keywords: Crowdsourcing, Human computation
INTRODUCTION
Crowd-powered interfaces have demonstrated the potential
to revolutionize interactive applications [2,3], but they are
limited by the problem of crowd latency. Paid crowdsourc-

ing markets like Amazon Mechanical Turk allow us to em-
bed human intelligence inside applications like word pro-
cessors [2], question-answering services [3] and image
search [28], but today crowdsourcing is only a reasonable
choice if the user can wait a minute or more for a response.
Existing “nearly realtime” techniques on average produce a
single, unverified answer to a question in 56 seconds [3].
More complex workflows require 22 minutes or longer [2].
Users are not used to waiting, and will abandon interfaces
that are slow to react. Search engine usage decreases linear-
ly as delays grow [21], and Jakob Nielsen argues that ten
seconds is the maximum delay before a user loses focus on
the interaction dialogue [20]. The much longer delays with
crowdsourcing make it difficult for crowds to help with

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
UIST’11, October 16–19, 2011, Santa Barbara, CA, USA.
Copyright © 2011 ACM 978-1-4503-0716-1/11/10... $10.00. 	

Figure 1. Adrenaline is a camera that uses crowds to find
the right moment for a picture by capturing ten-second mov-
ies. It looks for early agreement to filter the timeline down
quickly to a single frame. A photo is typically ready about
one second after the user reviews the movie.

© ACM, 2011. This is the author's version of the work. It is posted here by permission of ACM for your personal use.
Not for redistribution. The definitive version was published in the Proceedings of UIST 2011.

tasks in the moment-to-moment workflow. For example,
using crowds to create a smarter copy-paste command
would be difficult: one minute waits between copying and
pasting drive users away. We need new approaches if we
want to realize the vision of the user pushing a button and
seeing a crowd-powered result just seconds later.
In this paper, we introduce recruitment strategies, algo-
rithms, and applications for realtime crowdsourcing. Our
goal is to complete non-trivial crowdsourced computation
within seconds of the user’s request — fast enough to feed
back into an interface before the user loses focus. Realtime
crowdsourcing can open up a broad new class of applica-
tions for crowd-powered interfaces.
Our core contribution is to introduce on-demand synchro-
nous crowds as a key to realtime crowdsourcing. In syn-
chronous crowds, all crowd members arrive and work sim-
ultaneously. While prior work has focused on recruiting
individual crowd members quickly (e.g., [3]), we believe
that minimizing recruitment time is not enough. Even fast
workers may not produce a first result for tens of seconds
[3], and complex workflows require several minutes
[23,28]. Worse, fast workers may not be available, and un-
predictable wait times hurt user experience. With synchro-
nous crowds, we can reliably execute complex search tasks
within ten seconds of request. However, to do so, we need
to recruit synchronous crowds on-demand and guide them
to complete tasks effectively.
To recruit on-demand synchronous crowds, we present the
retainer model and a set of empirically derived guidelines
for its use. It hires crowd members in advance, then places
them on hold for low cost and alerts them when a task is
ready. Our most effective design results in a majority of
workers returning within two seconds and 75% within three
seconds. The retainer model’s performance is striking in
that it approaches human limits on the cognitive recognize-
act cycle and motor reaction times [4]. It nearly zeroes out
wait times, which in previous work ranged from twenty
seconds [3] to twenty minutes [2]. Most importantly, how-
ever, it makes on-demand synchronous crowds available as
a new resource for crowdsourcing.
Developers need ways to guide or program synchronous
crowds for realtime results. We introduce rapid refinement,
the first design pattern for synchronous crowds, which fo-
cuses on low-latency, reliable work. The fundamental in-
sight behind rapid refinement is that synchronicity enables
an algorithm to recognize crowd agreement early. The rap-
id refinement design pattern quickly reduces a large search
space by focusing workers’ attention to areas they are be-
ginning to agree on independently (Figures 1 and 4). Re-
peatedly narrowing the search space to an agreement region
encourages quality results because it is built around inde-
pendent agreement. It also allows the interface to provide
incremental, trustable feedback before a final answer is
available. Critically, rapid refinement leads to fast results:
faster than approaches that keep workers separate, and fast-
er on average than even the fastest individual worker.

We use the retainer model and rapid refinement to explore
new avenues for realtime crowd-powered interfaces
through a system called Adrenaline. Adrenaline is a smart
camera shutter powered by crowd intelligence: it finds the
right moment to take a photo. Instead of taking a single
shot, Adrenaline captures a short video — allowing the user
to move around the scene, the subject to strike multiple
poses, or action in the scene to unfold unpredictably —
then uses rapid refinement to identify the best moment as a
still photo about ten seconds later. Low latency means that
users can preview and share photos they just took, like they
would with any other digital camera.
To investigate the larger design space of realtime crowd-
powered interfaces, we also present two other systems,
Puppeteer and A|B. Puppeteer focuses on large-scale crea-
tive generation tasks, allowing a graphic artist or designer
to fill a page with a large collection of crowd-posed figures
(for example, a stadium of excited concert attendees or a
full dance floor). The designer interacts directly with the
crowd as they work, and sees the first results 2.1 seconds
after request. A|B focuses on extremely low latency re-
sponses for A-or-B questions, allowing users to ask which
clothes to wear, which font looks better, or which version
of a sentence reads more clearly. A|B returns a histogram
of five votes to the user in 5–7 seconds.
This paper carries realtime crowdsourcing from recruit-
ment, through programming patterns, to applications. We
make the following contributions:
1. The retainer model, which produces synchronous

crowds by recruiting workers in advance and alerting
them when work is available. We present empirically
derived design guidelines for retainer systems.

2. The rapid refinement programming pattern, which
looks for emerging agreement in synchronous crowds
to narrow down a large search space to a single result.

3. Adrenaline, a realtime crowd-powered camera that
crowdsources the selection of the best photographic
moment in a short movie in roughly ten seconds. Pup-
peteer and A|B extend these ideas into creative design
tasks, opinion tasks, and online feedback to workers.

We implement these ideas on Amazon’s Mechanical Turk
platform. However, we also suggest ways that realtime
crowdsourcing techniques might impact future platforms.
The remainder of this paper proceeds as follows. We first
survey related work on systems and studies that gather
crowds for quick results. We then introduce the retainer
model and describe several experiments exploring its effec-
tiveness. We introduce Adrenaline, and use it to motivate
and explain the rapid refinement design pattern. We evalu-
ate Adrenaline to test the effectiveness of our approach, and
finally introduce Puppeteer and A|B to demonstrate the
reach of realtime crowd-powered interfaces.

RELATED WORK
The work presented in this paper builds upon research on
low-latency crowdsourcing, synchronous crowds, and
crowd-powered interfaces.
Latency in Crowdsourced Tasks
An important thread of work models and influences wait
times on crowdsourced task markets. We use several of
these techniques, then push beyond single workers to
crowds and from half-minute results to 5–10 second results.
Reducing task completion time has become one of
crowdsourcing’s holy grails. Increased payment leads to
higher work output, which translates to faster completion
times [19]. Task type (e.g., audio transcription vs. product
review) impacts completion time in long-running tasks, but
time of day and day of week have a much weaker effect
[27]. quikTurKit recruits workers in advance to solve old
tasks, then replaces the old tasks with new work when re-
quests arrive. It also re-posts tasks to keep them near the
top of the “most recent” ordering, which is a popular view
that workers use to find tasks [5]. We adopt versions of
both these techniques in Adrenaline, then introduce new
techniques to gather crowds simultaneously, reduce vari-
ance in lag times, and reduce wait times by a factor of ten
— without added cost.
No work to our knowledge has investigated ways to reduce
latency once workers arrive. This is the focus of the rapid
refinement algorithm.
Synchronous Crowds
In addition to low-latency crowdsourcing, researchers have
begun investigating synchronous, collaborative crowds.
Our work introduces the notion that low-latency crowds
can enable synchronous crowds on demand, and that algo-
rithmic designs can coordinate synchronous crowds
through complex workflows quickly.
The ESP Game pioneered the use of multiple individuals
working simultaneously on human computation tasks [26].
Our work adopts the game’s notion of simultaneous inde-
pendent agreement, as well as the idea of replaying old
episodes when there are no collaborators.
Synchronous online experiments have gathered some of the
largest simultaneous crowds so far. One approach is to
build a panel of workers prior to the study, e-mail the night
before the study, and recruit three times as many workers
as needed [18]. The retainer model is a more sustainable,
shorter-term variant of the waiting room in this approach.
Our work recruits somewhat smaller crowds, but needs
orders of magnitude less time to do so.
Finally, synchronous crowds open up the possibility for
crowd collaboration. For example, Mao et al. used Mason
and Suri’s techniques to recruit crowds to solve distributed
problems like graph coloring [17]. Kittur used collaborative
text authoring software to enable collaborative text transla-
tion, finding that workers would coordinate and communi-
cate with each other while working [13]. The Shepherd
system likewise recognizes that workers overlapping in

time could provide synchronous peer feedback [7]. The
retainer model can bring crowds of this kind together rela-
tively quickly, further enabling this kind of work. Many of
these techniques draw on synchronous group collaboration
research (e.g., [8,11]).
Crowd-Powered Interfaces
Our work aims to break ground on a new class of realtime
interactivity in crowd-powered interfaces. There are cur-
rently two approaches to managing latency in crowd-
powered interfaces: streaming and batching results. Stream-
ing is used by VizWiz [3] and CrowdSearch [28]: they re-
turn work to the user, unfiltered, as soon as it is available.
Streaming returns work relatively quickly. However, be-
cause the system does not have time to aggregate answers,
it cannot perform much quality control via redundancy, and
it tends not to use complex workflows. Soylent [2] takes a
second approach, batching: it waits longer, but has the time
to execute a multi-stage workflow and combine all results
into a single interface. Our work is closer to a batching
approach, but it shortens batch time to a few seconds.
High-frequency batching enables workflows while still
providing feedback to the user every few seconds.
Adrenaline, Puppeteer and A|B use the crowd to expand on
previous applications. Adrenaline shares the goals of the
Moment Camera [6] by recording continuously and using
crowds to make the hard semantic decision of what is a
good photo. The Moment Camera and Adrenaline comple-
ment each other: computational photography can check
whether subjects’ eyes are open and can tune camera set-
tings, but it is only trained on certain classes of images and
it is much harder to train an algorithm to make subjective
judgments. Puppeteer gives the crowd a rigid shape defor-
mation tool [10], then relies on the crowd to generate plau-
sible deformations based on a text description. It is inspired
by projects like The Sheep Market [14], and introduces
crowd assistance as part of the tight loop of the creative
process. Furthermore, it allows the user to interact with the
workers as they explore. A|B gathers opinions quickly from
multiple independent people, as suggested by Surowieki
[24], though it focuses on subjective assessment rather than
guesses at factual questions. Toomim [25] used crowds to
evaluate alternatives more thoroughly, though with much
longer latency.
ADRENALINE: A REALTIME CROWD-POWERED CAMERA
“You must know with intuition when to click the camera.
That is the moment the photographer is creative. […] The
Moment! Once you miss it, it is gone forever.”
— Henri Cartier-Bresson [1], 1957
Novice photographers often struggle to capture what Car-
tier-Bresson called The Decisive Moment. The instant when
the shutter opens, the subject might have broken into an
awkward smile, the angle might be poor, or the decisive
moment might have passed. As a result, photos taken by
novices can feel stilted or ‘off’. Experienced photographers
learn to compensate by taking many photographs — tens of
photos rather than one — then sorting through them later to

find the gem. They try multiple angles, capture photos over
several seconds, or ask subjects to strike different poses.
Adrenaline is a realtime crowd-powered camera that aims
to find the most photogenic moment by capturing many
alternatives. Rather than taking a single photo, Adrenaline
captures a ten-second movie and recruits a crowd to quick-
ly find the best photographic moment in the movie (Figure
1). Within five seconds after the movie is captured, the user
can see crowd members exploring the timeline (colored
triangles in Figure 1). A few seconds later, the user can see
that the crowd has narrowed down to a small fraction of the
timeline, then again to a few adjacent frames, and finally to
a final photo in a total of about eleven seconds. This means
that a final photo is ready just moments after the user fin-
ishes reviewing the movie they just captured.
Adrenaline’s goal is to mimic the instant-review capabili-
ties of cameras today. Seeing a photo quickly means that
users can take another photo if they want, show it instantly
to friends, or post it to the web. The visceral thrill of novice
photography can be lost when the photo is not available for
minutes or days. Many novices never review the pile of
extra photos, so we believe that is extremely important to
complete the image selection process while Adrenaline still
has the user’s attention.
Existing crowdsourcing techniques cannot support Adrena-
line’s goal of 10–12 second latency. To achieve this, we
introduce the use of synchronous crowds via the retainer
model for recruitment, and the rapid refinement algorithm
to guide the search process quickly and reliably.
RETAINER MODEL
To power realtime applications like Adrenaline, we need to
gather not just one individual but an entire crowd quickly: a
synchronous, ‘flash’ crowd. We would like the crowd to
turn their attention to our task as soon as it is available, and
to do so without paying for more tasks than necessary.
While it was clear from our explorations that workers
would respond more quickly when paid money, it was not
certain that they could respond fast enough for an interac-
tive system. How should a retainer system be designed to
1) guarantee a fast response time, 2) be cheap enough to
scale, and 3) maintain that response time after a long wait?
In this section, we introduce the retainer model for syn-
chronous crowdsourcing and empirically derived design
guidelines for its use. This approach solves all three issues
by placing workers on retainer — signed up to do work
when it is available — for a small fee, then allowing them
to pursue other work while they wait. When the user makes
a request, the retainer model alerts the workers. Our de-
signs result in a majority of workers returning two seconds
after request, all together, enabling synchronous crowds.
Retainer Design and Wait Time
Workers agree to be put on retainer by accepting the task.
They are given task instructions and an example, and told
that they will be alerted when a task is ready. We scale the
task price up by expected wait time, usually 0.5¢–1¢ per

minute on retainer. After workers agree, they are free to
leave the browser tab open and pursue other work.
The worker’s browser polls a work server to see if tasks are
available. When a user posts a task, the work server notifies
the client, and the client’s browser issues a Javascript
alert() and an audio chime to signal the worker. Optionally,
the work server may also offer a small bonus to reward
quick responses. Workers dismiss the alert when they ar-
rive, then begin the task. If no new tasks are ready by the
end of the retainer period, the retainer model gives workers
an old task to perform. As work arrives more consistently,
however, the chances of this happening become lower.
Retainer Field Experiments
Can workers react quickly enough to support a realtime
application, especially when they may be distracted with
other tasks? This section describes field experiments of the
retainer model that investigate its effectiveness.
We created a benchmark Mechanical Turk task that in-
structed workers to click on all the verbs in a random para-
graph from a blog or a book. Workers were told that the
task would be ready within a specific retainer time limit,
then the web page began an invisible countdown that sam-
pled randomly between zero seconds and the maximum
retainer time. When the countdown finished, the page alert-
ed the worker and showed a task. We prevented workers
from accepting more than one of our tasks at a time.
Study 1: Retainer Time
To test how long we could keep workers primed, we exper-
imentally manipulated retainer time to vary between 0.5, 1,
2, 5, 10, and 30 minutes. We scaled payment roughly line-
arly with retainer time: 2¢, 3¢, 4¢, 7¢, 12¢, and 32¢. We
hypothesized that worker response time would increase
after 1–2 minutes, as workers stopped monitoring the page.
To reduce the chance that workers would see multiple price
points for the same task, we posted each set at different
hours. We ran the experiment over a period of six days, in
six separate one-hour periods each day, and randomized the
order of conditions. A total of 280 workers completed 1545
tasks. We removed and rejected 103 tasks because they
disagreed significantly with our ground truth.
Results. For retainer times under ten minutes, 46–61% of
workers dismissed the alert within two seconds and 69–
84% of workers dismissed the alert within three seconds.
These curves in Figure 2 asymptote to a completion rate of
83–87%: the rest of the workers never returned to complete
the task. Retainer times of ten minutes or more resulted in
much lower completion rates, 49–66%. The median time
between dismissing the alert and completing the first in-
cremental piece of work (clicking on a verb) was 3.35 se-
conds across all conditions.
These results suggest that for wait times under ten minutes,
we could expect to produce a crowd in two seconds, and a
larger crowd in three seconds. In the next study, we inves-
tigate how to improve response time and completion rates
further through retainer designs.

Study 2: Alert Design
While Study 1’s results are already good enough to get a
crowd quite quickly, can we improve on them by changing
the reason that workers would pay attention? Can we incen-
tivize the slow workers to move more quickly?
We investigated design and financial incentives to shift the
curve so that more workers came within the first 2–3 se-
conds. We used the 12¢ 10-minute retainer condition from
Study 1, which exhibited a low completion rate and a slow-
er arrival rate. The alert condition functioned as in Study 1,
with a Javascript alert and audio chime. Bonuses can be
powerful incentives [19], so we designed a reward condi-
tion that paid workers a 3¢ bonus if they dismissed the alert
within two seconds. Two seconds is short enough to be
challenging, but not so short as to be out of reach. To keep
workers’ attention on the page, we created a game condi-
tion that let workers optionally play Tetris during the wait-
ing period. Finally, to isolate the effectiveness of the Javas-
cript alert, we created a baseline condition that displayed a
large Go button but did not use an audio or Javascript alert.
We hypothesized that the bonus and game conditions might
improve response time and completion rate.
For Study 2, we implemented a between-subjects design by
randomly assigning each worker to a condition for the same
verb-selection task. We posted tasks for four hours per day
over four days. Workers completed 1913 tasks — we re-
moved 90 for poor work quality.
Results. Paying a small reward for quick reactions had a
strong positive impact on response time (Figure 3). In the
reward condition, 61% of workers responded within two
seconds vs. 25% in the alert condition, and 74% responded
within three seconds vs. 50% in the alert condition. Rough-
ly speaking, the ten-minute retainer with reward had similar
performance to the two-minute retainer without reward. In
addition, workers in the reward condition completed 2.25
times as many tasks as those in the alert condition (734 vs.

325), suggesting that the small bonus has a disproportion-
ately large impact on work volume. Predictably, the base-
line condition without the alert dialog performed poorly,
with 19% returning within three seconds. The game was
not very popular (5.7% of completed tasks cleared a row in
Tetris), but had a small positive impact on reaction times.
Retainer Model Discussion
Our data suggest that the retainer model can summon a
crowd two seconds after the request is made. In exchange
for a small fee, the retainer model recalls 50% of its work-
ers in two seconds and 75% in three seconds. Though reac-
tion times worsen as the retainer time increases, a small
reward for quick response negates the problem. Our exper-
iment commonly produced 10–15 workers on retainer at
once, suggesting that users could fairly reliably summon a
crowd of ten within three seconds. Applications with an
early indication that the user will want help (for example, a
mouseover on the icon or an “Are You Sure?” dialog) can
eliminate even this delay by alerting workers in advance.
The cost of the retainer model is attractive because it pays
workers a small amount to wait, rather than spending mon-
ey to repeat old tasks. The cost of the retainer model de-
pends on the desired arrival time !, the empirical arrival
distribution !(!""#$% ≤ !) as in Figure 2, and the desired
workers !. The number of retainer workers ! needed is:

! =
!

!(!""#$% ≤ !)

For example, to recruit 5 workers within 3 seconds in the
ten-minute retainer with reward, the system should place 8
workers on retainer (rounded from 7.8), then expect that 7
will return to complete the task and 4 will earn rewards.
Assuming that we set the retainer length longer than the
expected time period between requests !, the hourly (60-
minute) cost of the retainer model depends on the retainer
wage per minute !!, and the base cost for the task !!:

Figure 3. A small reward for fast response (red) led workers
in a ten-minute retainer to respond as quickly as those on a
two-minute retainer without reward (Figure 2, red). N=1913.

 Baseline Alert Game Reward
Median 36.66 s 3.01 s 2.55 s 1.68 s
3rd quartile — 6.92 s 5.01 s 3.07 s
Completion 64.2% 76.5% 76.7% 85.5%

Table 2. A tabular representation of Figure 2.

Figure 2. For retainer times under ten minutes, a majority of
workers responded to the alert within two seconds and
three-quarters responded within three seconds. N=1442.

 30 sec 1 min 2 min 5 min 10 min 30 min
Median 1.77 s 1.77 s 1.91 s 2.18 s 3.34 s 10.32 s
3rd quartile 2.44 s 2.39 s 3.46 s 3.75 s — —
Completion 86.6% 87.2% 82.9% 75.1% 66.4% 49.4%

Table 1. A tabular representation of Figure 1.

!"#$ = ! !"
!
!! + 60!!

Paying a half-cent per minute on retainer and with no wast-
ed tasks, one worker on retainer costs 30¢ per hour.
RAPID REFINEMENT: COORDINATING SYNCHRONOUS
CROWDS FOR FAST RESULTS
Once recruitment times are negligible, slow work time
dominates the user experience. Even straightforward tasks
like question-answering can take thirty seconds under good
conditions [3], and the wait can be much longer before
there are enough answers to make a clear judgment.
The problem is not just one of minimum response time, but
also one of variance. Time variance means that wait time
will not be reliable: it will depend on whether the system
happened to recruit a fast worker. That worker may also
produce low quality results. Worse, nontrivial human com-
putation algorithms (e.g., [16]) often wait for several results
before proceeding: it is even less likely that a system would
recruit multiple fast workers. We could require workers to
finish within a short time limit, but our experience is that
this is stressful to workers and leads to poor results.
To complete nontrivial crowdsourcing tasks in realtime, we
must develop new algorithms and programming patterns to
return quality results quickly and reliably. Like traditional
randomized algorithms, we may be willing to sacrifice
some amount of comprehensiveness for faster runtime.
The insight behind our solution is that low-latency crowds
are synchronous crowds: all workers are working simulta-
neously. Synchronous crowds can interact with, influence,
and communicate with each other and the user. In most on-
demand crowdsourcing approaches, workers do not overlap
in time enough for synchronous designs to make sense.
However, the retainer model makes it practical to assume,
for the first time, that the crowd is all present simultaneous-
ly a few moments after request. So, rather than waiting for
all results in order to continue, a realtime algorithm has the
opportunity to influence the process as it takes place.
We take advantage of synchronous crowds by recognizing
potential agreement early on, while workers are still explor-
ing, and then focusing workers’ attention on the area of
agreement. The insight is that the majority of Turkers who
are efficient satisficers [22] can guide the process: these
workers decide on the gist of the solution quickly, but can
take time to commit to a final answer. Rapid refinement
recognizes when several workers are likely to agree and
commits for them by focusing the task on that area. Fast
workers will still find an answer quickly and contribute to
the vote, whereas slow workers benefit from the focus on a
smaller search space. In the next section, we will describe
the rapid refinement algorithm that implements this idea.
Algorithm Design
The rapid refinement algorithm repeatedly narrows down a
search region to a fraction of its existing size when it senses
that workers independently agree on the subregion (Figure
4). It is appropriate for a variety of search-oriented human
computation tasks.

Rapid refinement begins with the entire search space avail-
able and workers initialized to a random position. The algo-
rithm takes place in phases where each phase narrows to a
smaller search region. Workers trigger a new phase by in-
dependently focusing on the same area for a period of time.
The algorithm depends on three values: the agreement
range !, agreement time !, and agreement amount !. If a
fraction ! of the workers stayed within a range less than a
fraction ! of the existing search area for at least ! seconds,
rapid refinement declares agreement. It then shrinks the
search space to match the agreement range and begins a
new phase. Workers are no longer able to explore the out-
of-bounds area, and must try to agree within the new re-
gion. This process repeats until convergence. To approve or
reject work, rapid refinement looks at whether the worker
agreed with at least one phase change.
In Adrenaline, the algorithm begins with the entire video
timeline. Workers vote on a good photo using their timeline
slider. They cannot see others’ sliders, which encourages
independent agreement [24]. When at least 33% of the
workers have been in the same 25% of the timeline for at
least 2 seconds, Adrenaline declares agreement. These val-
ues can be adjusted to trade off delay for false positives.
With these values, Adrenaline converges in 3–4 phases per
video. The first phase is the slowest, and agreement accel-
erates as workers’ attention is focused on one area.
The rapid refinement algorithm has several benefits aside
from speed. First, it produces preliminary results that can
be returned to the user early. Early results reduce interface
latency and allow the user to provide feedback on the pro-
cess. Second, it combines work and verification into one
stage, which saves cost and time for a separate verification
step. Third, workers tailor their votes toward what someone
else might think, which minimizes individual bias [9].
Rapid refinement makes tradeoffs. First, the algorithm may
focus too early on a single part of the search space, espe-

Figure 4. Rapid refinement repeatedly shrinks the working
area for all workers when it detects that several independent
workers are exploring the same area.

cially if the low quality workers are the first to respond.
With four or more workers, it is possible to fork the crowd
into two simultaneous groups to help avoid this problem.
Forking the crowd has the additional benefit that the algo-
rithm can explore multiple promising paths at the same
time. Second, it may stifle individual expression: talented
workers might be forced to agree with the majority. A fu-
ture system could recognize such workers and give them
more weight in the votes.
A slight modification to the algorithm can guarantee con-
vergence. In particular, systems can increase the agreement
fraction ! as time passes in each phase. Then, given at least
three workers, the algorithm will always converge.
EVALUATION
We have argued that the retainer model and rapid refine-
ment combine in Adrenaline to produce a realtime crowd-
powered interface by controlling variance in wait time and
quality. In this section, we report on an evaluation of
Adrenaline that evaluated this claim, stress-tested the re-
tainer model and rapid refinement, and investigated wheth-
er end users understand the system.
Method
We recruited 24 participants through e-mail lists in ex-
change for a $20 gift certificate. Fourteen were male and
ten were female, and the median age was 25. About half
had taken a photograph on a cell phone camera or consum-
er camera in the past month, and five had taken pictures on
a DSLR camera in the past month. The typical participant
was a young, technically competent student who had a
moderate interest in photography as a hobby (median Likert
response: 4/7). Participants arrived to the study in pairs.
We gave each participant a smartphone with Adrenaline
installed and introduced them to the application. We did not
allow participants to immediately see the still photos that
Adrenaline chose, so that we could compare rapid refine-
ment to other approaches. Participants began by taking a
video portrait of their partner. Then, the pair spent fifteen
minutes in a public area capturing videos of people, ac-
tions, or landscapes. Finally, participants chose two videos
in addition to the portrait to submit for the evaluation.
On a weekend afternoon, we generated candidate photo-
graphs using the following computational, expert, and
crowdsourced approaches:
• Rapid Refinement: we required five workers to be on

retainer before labeling each video.
• Generate-and-Vote: a standard crowdsourcing ap-

proach [15] in two stages. First, five retainer workers
independently selected a frame in the video. Then,
keeping the fastest three results returned, we use eight
retainer workers to vote on the best photo of the three.

• Generate-One: using the same dataset as Generate-
and-Vote, this condition simulated stopping the pro-
cess as soon as the first worker submitted a photo.

• Photographer: a professional photographer labeled the
best still frame in each video.

• Computer Vision: the still frame selection algorithm on
YouTube, which uses recent computer vision research
algorithms [12].

We used the quikTurKit technique to repeatedly post tasks
and keep work near the top of the Mechanical Turk task
list, then implemented a five-minute retainer and a 2¢ bo-
nus for quick response. We paid 4.5¢ on average for a rapid
refinement or generate task (quikTurKit posts tasks at mul-
tiple price points simultaneously), and 3.5¢ on average for
a vote task. Including bonuses and removing one worker on
average who never responded to the retainer, these costs
added up to 4(4.5¢) base + 2(2¢) bonus = 22¢ per video for
the rapid refinement and generate tasks. Voting added eight
workers: we estimated 7 would appear and 3 would earn
the bonus, for an additional 31¢. So, rapid refinement and
generate-one cost 22¢ per video, and generate-and-vote
cost 53¢ per video. In a live system, it would be feasible to
use fewer workers and pay closer to 10¢ rather than 22¢.
On Mechanical Turk, we posted half of the videos first in
the rapid refinement and generate-and-vote conditions to
compensate for order effects.
We then contacted all of our participants and asked them to
rate each still photo on a 9-point Likert scale. We instructed
participants to ignore aspects of the picture like contrast
and color that could be computationally improved.
Results
We used the retainer model to post each video as soon as
there were five workers on retainer, stress-testing the vol-
ume of the retainer model. Adrenaline had enough workers
to label a video every 45 seconds (median). Worker arrivals
were bursty, but the median time between retainer arrivals
was 6.3 seconds. The median time between unique worker
arrivals was 48.8 seconds. These numbers are dependent on
the current workforce state of Mechanical Turk, and will
change as the market grows or more tasks use retainers.
Timing. Table 3 lists our results. Rapid refinement returned
the fastest results, with a median total time of 11.6 seconds
(µ=12.6, σ=4.3). Generate-One, which used the first availa-
ble photo was a few seconds slower, with a median time of
13.6 seconds (µ=16.3, σ=9.8). Generate-One’s timing
standard deviation was nearly twice that of rapid refine-
ment. These variances are significantly different from each
other, F(71, 71)=5.17, p<0.001.
The timing data is non-normal, so we square-root trans-
formed it to satisfy normality assumptions. An ANOVA
comparing the delay for the three human computation algo-
rithms is significant F(2, 213) = 278.11, p < .001, and post-

 Delay Quality
 Median Mean 9pt Likert
Computer Vision – – 4.9 σ=2.2
Generate and Vote 41.9 45.3 σ=14.0 6.6 σ=2.1
Generate One 13.6 16.3 σ=9.8 5.9 σ=2.6
Professional Photographer – – 6.4 σ=2.3
Rapid Refinement 11.6 12.6 σ=4.3 5.8 σ=2.2
Table 3. Rapid Refinement was the fastest algorithm and
had the lowest timing variance, though it sacrificed slightly
on quality compared to Generate-and-Vote.

hoc pairwise Tukey comparisons confirmed that all condi-
tions were significantly different than each other (all p <
.05), confirming that rapid refinement is fastest.
Figure 5 outlines the median timing distributions of a rapid
refinement process. One worker typically arrived 2.2 se-
conds after the video was uploaded, and the second and
third came within 2.6 seconds. At least two workers were
moving their sliders by 5.3 seconds after request. After the
crowd began exploring, agreement took 4.7 seconds in the
first phase. The median first phase completed a total of
10.05 seconds after request (µ=10.65, σ=3.0). The follow-
ing phases lasted 0.75 seconds each, typically. These phas-
es moved more quickly because workers were often already
agreeing on a small area when the first phase completed.
Quality. Quality ratings tell an unexpected story. Partici-
pants’ ratings had high variance, making it difficult to draw
statistical conclusions (Table 3). However, Generate-and-
Vote appears to match or beat the Photographer condition.
While we believe that a photographer would take better
pictures given the opportunity to operate the camera, it ap-
pears that an unskilled crowd may be equally talented at
selecting good moments. Generate-One also performed
better than expected, roughly matching Rapid Refinement.
As with timing, however, Generate-One was less reliable
and had a higher variance. The Computer Vision approach
was the least successful, which suggests that using crowds
in a subjective photo quality task is a good match.

Study Discussion
This study suggests that rapid refinement guides crowds of
two to five people to select a good photo faster than even
the fastest member of a similar-size group. We might ex-
pect that workers would conflict, stalemate and disagree
with each other. However, bottlenecks were uncommon,
especially with more than two crowd workers. This result
suggests that, rather than interfering with each other, syn-
chronous crowds may hold significant promise for explor-
ing new forms of cooperation and collaboration (e.g., [13]).
Quality may be the most salient issue with rapid refine-
ment: its photos were of reasonable quality, but it did not
match Generate-and-Vote. One common source of error
was too-fast agreement in the later phases. Sometimes the
algorithm decided that workers agreed in the second phase
before they had adequate time to explore the timeline and
make a decision. We have prototyped designs to compen-
sate for this: for example, requiring that workers explore a
minimum fraction of the range before their votes are count-
ed, or requiring a minimum time lapse between phases.
These approaches empower the designer to trade off in-
creased lag in exchange for better quality.
A second issue is that rapid refinement uses constants that
may depend on task, crowd size and the number of items
being explored. For example, constants that work well for
small crowds of 3–5 may act differently when 10–15 crowd
members arrive. A more principled approach would treat
workers’ locations as populating a probability density func-
tion over frames. Then, measures of distribution
peakedness, like kurtosis, would likely ease this problem.
The retainer model was more aggressive than necessary.
Often workers joined midway through the process, result-
ing in more workers than needed. Given a sufficiently busy

system, we might re-route late-
comers from a retainer into a dif-
ferent task. Alternatively, there
may be design patterns that place
latecomers into a complementary
role in the computational process,
like vetting.
OTHER REALTIME APPLICATIONS
In this section, we expand the de-
sign space of realtime crowd-
powered interfaces beyond Adrena-
line. We introduce two applica-
tions, Puppeteer and A|B, to ex-
plore questions of creative content
generation and even lower latency.
Puppeteer: Creativity and
Creation in Seconds
Realtime crowds can thread crea-
tion tasks into user interfaces as
well. Puppeteer (Figure 7) works in
conjunction with Adobe Photoshop
to support large-scale content gen-
eration and synchronous feedback

Figure 6. Photos from the Adrenaline study. The examples are good, typical, and bad
photos that rapid refinement recommended. The computer vision and photographer
columns demonstrate how other approaches performed on the same movie.

Figure 5. Timeline of the median Adrenaline execution.

to workers. Artists often want to create a large number of
believably varying objects, like an excited audience at a
concert or flowers in a field. Algorithmic techniques to
generate poses may not be realistic, semantically meaning-
ful, or generalizable to new objects.
Puppeteer users specify control points on an image using
Photoshop’s Puppet Warp tool [10] (Figure 7a). Users give
a textual description of their goal (e.g., “Make the person
look like he is dancing”), then workers each pose three fig-
ures to match the goal. As workers progress, the user ob-
serves them through a small multiples interface (Figure 7c).
Then, because of the realtime nature of the application, the
user can communicate with workers (e.g., “Can you make
another one more like your first?”) These poses can be im-
ported back into Photoshop to arrange the final result.
As an illustrative example, we simulated a user request to a
large number of Puppeteer workers that they pose a human
stick figure so that it looked excited. After they finished
two puppets, we programmatically prompted workers with
a request to make the third figure look like it is jumping.
Anecdotally, the message was quite effective — the majori-
ty of workers’ third puppets appeared to be jumping where-
as the first and second puppets were rarely doing so.
To understand the latency and total throughput of Puppet-
eer, we repeated the “excited” task, but removed the
prompt. We began the task when there were 8 workers on
retainer, received the first control point movement 2.1 se-
conds later, and received the first completed figure in 25.0
seconds. The first worker completed the entire task (3 pup-
pets) in 46.1 seconds. Workers completed 300 puppets in
16 minutes and 35 seconds, or one puppet every 3.3 se-
conds. Work output rate was relatively constant throughout.
A/B: Instant Crowd Feedback
It can be hard to escape from our own biases when we try
to predict what others will think. Crowds are certainly good
at having opinions, but high latency makes them less useful

for snap decisions. A|B is our lowest-latency crowd feed-
back platform. The user asks a question and takes two pic-
tures, then a histogram of crowd feedback appears mo-
ments later. A user might try on two different sweaters,
take pictures of each, and ask which one looks better; an
artist might sketch two different versions of a character and
ask which one looks more engaging; a designer might want
fast aesthetic feedback on a sketch.
In our tests with eight workers on retainer, A|B returned
five opinions in as little as five seconds.
DISCUSSION
In this section we explore the implications and limitations
of realtime crowdsourcing.
Synchronous crowds and rapid refinement open the door to
many applications and techniques. Crowdsourcing has
largely been confined to divide-and-conquer tasks, but syn-
chronous crowds enable coordination and collaboration on
a new set of problems. Such crowds can edit documents
simultaneously (e.g., [13]), work on team tasks, and dis-
tribute large tasks in new ways. Rapid refinement also has
applications in other search tasks. For example, rapid re-
finement might power a predictive mobile web browser that
uses crowds to search the page for the user’s next action
and offer swipe-to-complete for that action, or redesign
Soylent’s Find task [2] as a synchronous, parallel process.
Larger, non-visual search spaces are another avenue for
future work. If it is harder for workers to skim the items or
the search space is very large, agreement will be sparser.
We are interested in separating tasks into overlapping seg-
ments to address this problem. The core interface insight is
to stop workers from worrying about deciding on one right
answer and instead quickly call out promising areas.
We envision a future where crowdsourcing markets are
designed for quick requests. A centralized system could use
queueing theory to manage the worker pool and decide
when to hire. Queueing theory makes assumptions about

Figure 7. Puppeteer allows an artist or designer to generate a group of articulated figures quickly, and to interact with workers
as they work. a) The user demonstrates control points. b) Workers move control points to match a request, like “make the per-
son look excited!” c) The user watches incoming results and interacts with workers. d) The final result in Photoshop.

the distribution of worker arrivals, request arrivals and
work times that would imply how many workers to put on
retainer in advance. Workers could follow tasks they liked,
saving them time searching the task list, and be on call for
several tasks simultaneously. The system could then route
workers to tasks where they are needed most.
Until we have such a large-scale realtime crowdsourcing
platform, scale remains an issue. Our experiments in April
2011 found it relatively straightforward to recruit 8–15
workers on retainer, but if thousands of users began using
Adrenaline, it might exhaust the worker pool. Given suffi-
cient demand, however, more workers would likely enter
the market in exchange for higher wages. Successful
realtime services might eventually recruit their own full-
time crowds like ChaCha [www.chacha.com].
CONCLUSION
This paper introduces techniques for realtime crowdsourc-
ing and its applications in user interfaces. Where the fastest
crowd-powered interfaces used to be limited by a median
response time of nearly a minute [3], we show that it is
possible to recruit a crowd within two seconds, get that
crowd to answer a simple query within five seconds, and
complete a complex search in roughly ten seconds. We
presented Adrenaline, a realtime crowd-powered mobile
phone camera that captures several seconds of video, then
uses the crowd to quickly find the best still photo in the set.
Our solution is to introduce on-demand synchronous
crowds, where workers arrive and work simultaneously. To
create on-demand synchronous crowds, we present the re-
tainer model of recruitment, which pays workers a small
amount to come quickly when asked, and a set of empiri-
cally derived design guidelines for its use. With synchro-
nous crowds, algorithms can identify regions of likely
agreement before workers would normally select a final
answer. This intuition led to rapid refinement, a design pat-
tern that focuses the search space on areas of emerging
agreement to quickly narrow complex search tasks. The
combination of these two ideas enable reliably fast turna-
rounds for Adrenaline — ten seconds to a preview and the
final photo a second or two later. This speed is on average
faster than even the fastest individual worker. Finally, we
extended the design space of realtime crowd-powered inter-
faces with A|B and Puppeteer, which achieved an even
lower latency of five seconds to five responses and embed-
ded crowd contributions directly in an authoring interface.
ACKNOWLEDGMENTS
Special thanks to Katrina Panovich, Jeff Bigham, our col-
leagues at MIT and Adobe, and the workers on Amazon
Mechanical Turk. This work was funded in part by Quanta
Computer via the T-Party Project. Additional funding pro-
vided by Adobe and a NSF Graduate Research fellowship.
REFERENCES
1. Bernstein, A. The Acknowledged Master of the Moment.

Washington Post, 2004.
2. Bernstein, M.S., Little, G., Miller, R.C., et al. 2010.

Soylent: A Word Processor with a Crowd Inside. UIST ’10.

3. Bigham, J.P., Jayant, C., Ji, H., et al. 2010. VizWiz: Nearly
Real-time Answers to Visual Questions. UIST ’10.

4. Card, S.K., Moran, T.P., and Newell, A. 1983. The psy-
chology of human-computer interaction. Lawrence Erlbaum.

5. Chilton, L.B., Horton, J.J., Miller, R.C., and Azenkot, S. 2010.
Task search in a human computation market. HCOMP ’10.

6. Cohen, M.F. and Szeliski, R. 2006. The moment camera.
Computer 39, 8, 40–45.

7. Dow, S.P., Bunge, B., Nguyen, T., et al. 2011. Shepherd-
ing the Crowd: Managing and Providing Feedback to
Crowd Workers. Ext. Abs. CHI ’11.

8. Greenberg, S. and Bohnet, R. 1991. GroupSketch: A multi-
user sketchpad for geographically-distributed small groups.
Graphics Interfaceʼ91.

9. Hacker, S. and Von Ahn, L. 2009. Matchin: eliciting user
preferences with an online game. CHI ’09.

10. Igarashi, T., Moscovich, T., and Hughes, J.F. 2005. As-
rigid-as-possible shape manipulation. ACM Transactions
on Graphics (TOG), 1134–1141.

11. Ishii, H. and Kobayashi, M. 1992. ClearBoard: a seamless
medium for shared drawing and conversation with eye
contact. CHI ’92.

12. Ižo, T. and Yagnik, J. 2009. Smart Thumbnails on
YouTube. Google Research Blog.

13. Kittur, A. 2010. Crowdsourcing, collaboration and crea-
tivity. XRDS 17, 2, 22–26.

14. Koblin, A.M. 2009. The sheep market. C&C ’09.
15. Little, G., Chilton, L., Goldman, M., and Miller, R.C.

2010. Exploring iterative and parallel human computation
processes. HCOMP ’09.

16. Little, G., Chilton, L., Goldman, M., and Miller, R.C.
2010. TurKit: Human Computation Algorithms on Me-
chanical Turk. UIST ’10.

17. Mao, A., Parkes, D.C., Procaccia, A.D., and Zhang, H.
2011. Human Computation and Multiagent Systems: An
Algorithmic Perspective. AAAI '11.

18. Mason, W. and Suri, S. 2010. A Guide to Conducting Be-
havioral Research on Amazon’s Mechanical Turk.

19. Mason, W. and Watts, D.J. 2009. Financial Incentives and
the “Performance of Crowds.” HCOMP ’09.

20. Nielsen, J. 1993. Usability engineering. Morgan Kaufmann.
21. Schurman, E. and Brutlag, J. 2009. Performance related

changes and their user impact. Velocity 2009.
22. Simon, H.A. 1956. Rational choice and the structure of the

environment. Psychological review 63, 2, 129.
23. Sorokin, A., Berenson, D., Srinivasa, S.S., and Hebert, M.

2010. People helping robots helping people: Crowdsourc-
ing for grasping novel objects. IROS ’10.

24. Surowiecki, J. 2005. The Wisdom of Crowds. Random
House, New York.

25. Toomim, M., Kriplean, T., Pörtner, C., and Landay, J.A.
2011. Utility of Human-Computer Interactions: Toward a
Science of Preference Measurement. CHI ’11.

26. Von Ahn, L. and Dabbish, L. 2004. Labeling images with a
computer game. CHI ’04.

27. Wang, J., Faridani, S., and Ipeirotis, P.G. 2011. Estimating
the Completion Time of Crowdsourced Tasks Using Sur-
vival Analysis Models. CSDM ’11.

28. Yan, T., Kumar, V., and Ganesan, D. 2010. CrowdSearch.
MobiSys ’10.

